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Right invariant weak Riemannian metrics on diffeomorphism
groups were used intersively in image analysis, computational
anatomy, and other fields in the last 20 years. This gave rise to
many new surprising theoretical results, and I shall mention some
of them. See the overview article:
Bauer, Bruveris, M: Overview of the Geometries of Shape Spaces
and Diffeomorphism Groups. Journal of Mathematical Imaging and
Vision, 50, 1-2, 60-97, 2014, arXiv:1305.1150



Why Banach Lie groups are not enough

One of the important objects is the diffeomorphism group

Diff(M) = {ϕ ∈ C∞(M,M) : ϕ bijective, ϕ−1 ∈ C∞(M,M)} ,

of a compact smooth manifold M. We will see soon that Diff(M)
is a smooth Fréchet–Lie group. What about a Banach manifold
version of the diffeomorphism group? If n ≥ 1, then one can
consider

DiffCn(M) = {ϕ ∈ Cn(M,M) : ϕ bijective, ϕ−1 ∈ Cn(M,M)} ,

the group of Cn-diffeomorphisms. The space DiffCn(M) is a
smooth Banach manifold and a topological group, but not a Lie
group. What went wrong? The group operations are continuous,
but not differentiable. Each right translation is smooth. This is an
example of a half-Lie group.



Another half-Lie group is the group DiffHs (M) ⊂ Hs(M,M) of
Sobolev diffeomorphisms of order s > dim(M)/2 + 1. It is a
topological group with smooth right translations.

There seems to be a trade off involved: we can consider smooth
functions, in which case the diffeomorphism group is a Lie group,
but can be modelled only on a Fréchet space; or we look at
functions with finite regularity, but then composition ceases to be
differentiable. This choice cannot be avoided.

Theorem (Omori, 1978)

If a connected Banach–Lie group G acts effectively, transitively
and smoothly on a compact manifold, then G must be a
finite-dimensional Lie group.



A short introduction to convenient
calculus in infinite dimensions.

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.

Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.
For more general locally convex spaces we sketch here the
convenient approach to C∞ as explained in [Frölicher-Kriegl 1988]
and [Kriegl-M 1997].



The c∞-topology

Let E be a locally convex vector space. A curve c : R→ E is
called smooth or C∞ if all derivatives exist and are continuous. Let
C∞(R,E ) be the space of smooth curves. It can be shown that
the set C∞(R,E ) does not entirely depend on the locally convex
topology of E , only on its associated bornology (system of
bounded sets). The final topologies with respect to the following
sets of mappings into E coincide:

1. C∞(R,E ).

2. The set of all Lipschitz curves (so that

{ c(t)−c(s)
t−s : t 6= s, |t|, |s| ≤ C} is bounded in E , for each C ).

3. The set of injections EB → E where B runs through all
bounded absolutely convex subsets in E , and where EB is the
linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).



The c∞-topology. II

This topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.

In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since addition is no longer jointly continuous. Namely,
even c∞(D ×D) 6= c∞D × c∞D.

For a locally convex space E with dual E ′, evaluation
ev : E × E ′ → R is continuous for any topologies compatible with
the duality iff E is normable.

The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then c∞E = E .



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c∞-completeness):

1. For any c ∈ C∞(R,E ) the (Riemann-) integral
∫ 1

0 c(t)dt
exists in E .

2. Any Lipschitz curve in E is locally Riemann integrable.

3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all
λ ∈ E ∗, where E ∗ is the dual of all cont. lin. funct. on E .

I Equiv., for all λ ∈ E ′, the dual of all bounded lin. functionals.
I Equiv., for all λ ∈ V, where V is a subset of E ′ which

recognizes bounded subsets in E .

We call this scalarwise C∞.

4. Any Mackey-Cauchy-sequence (i. e. tnm(xn − xm)→ 0 for
some tnm →∞ in R) converges in E . This is visibly a mild
completeness requirement.



Smooth mappings

Let E , and F be convenient vector spaces, and let U ⊂ E be
c∞-open. A mapping f : U → F is called smooth or C∞, if
f ◦ c ∈ C∞(R,F ) for all c ∈ C∞(R,U).

If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C∞-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C∞c .



Main properties of smooth calculus

1. For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R2 this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3. If E ⊇ U
f−−→ F is smooth then the derivative

df : U × E → F is smooth, and also df : U → L(E ,F ) is
smooth where L(E ,F ) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where
the structure is given by the obvious injection

C∞(U,F )
C∞(c,`)−−−−−−→

∏
c∈C∞(R,U),`∈F∗

C∞(R,R), f 7→ (` ◦ f ◦ c)c,`,

where C∞(R,R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, II

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G )) ∼= C∞(U × V ,G )

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational calculus.
Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G ) is smooth (by (2)
equivalent to bounded) if and only if

E
f−−→ C∞(V ,G )

evv−−−→ G is smooth for each v ∈ V .

(Smooth uniform boundedness theorem,
see [Kriegl M 1997], theorem 5.26).



Main properties of smooth calculus, III

8. The following canonical mappings are smooth.

ev : C∞(E ,F )× E → F , ev(f , x) = f (x)

ins : E → C∞(F ,E × F ), ins(x)(y) = (x , y)

( )∧ : C∞(E ,C∞(F ,G ))→ C∞(E × F ,G )

( )∨ : C∞(E × F ,G )→ C∞(E ,C∞(F ,G ))

comp : C∞(F ,G )× C∞(E ,F )→ C∞(E ,G )



This ends our review of standard results of C∞ convenient calculus.
Convenient calculus (having properties 6 and 7) exists also for:

I Real analytic mappings [Kriegl,M,1990]. Mappings are
smooth along smooth curves and Cω along Cω-curves.

I Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33]). Mappings are holomorphic along affine
complex lines.

I Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type
[Kriegl,M,Rainer, 2009, 2011, 2013]. We will come back to
this later, since it has surprising consequences for
diffeomorphism groups.

I With some adaptations, Lipk [Frölicher-Kriegl, 1988].

I With more adaptations, even C k,α (k-th derivative
Hölder-contin. with index α) [Faure,Frölicher 1989], [Faure,
These Geneve, 1991].



Manifolds of mappings and diffeomorphism groups as
convenient manifolds.

We do this for C∞. It works for each real convenient calculus S
(not for holomorphic). See later for DC ultradifferentiable calculus.
Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric ḡ on N. Then
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��

zero section

{{
N� _
��

diagonal

%%
TN V N? _

open
oo (πN ,expḡ )

∼=
// V N×N � �

open
// N × N

C∞(M,N), the space of smooth mappings M → N, has the
following manifold structure. Chart, centered at f ∈ C∞(M,N), is:

C∞(M,N) ⊃ Uf = {g : (f , g)(M) ⊂ V N×N} uf−−−→ Ũf ⊂ Γ(f ∗TN)

uf (g) = (πN , expḡ )−1 ◦ (f , g), uf (g)(x) = (expḡf (x))−1(g(x))

(uf )−1(s) = expḡf ◦s, (uf )−1(s)(x) = expḡf (x)(s(x))



Manifolds of mappings II

Lemma: C∞(R, Γ(M; f ∗TN)) = Γ(R×M; pr2
∗ f ∗TN)

By Cartesian Closedness (after trivializing the bundle f ∗TN).
Lemma: Chart changes are smooth (C∞)
Ũf1 3 s 7→ (πN , expḡ ) ◦ s 7→ (πN , expḡ )−1 ◦ (f2, expḡ

f1
◦s)

since they map smooth curves to smooth curves.
Lemma: C∞(R,C∞(M,N)) ∼= C∞(R×M,N).
By the first lemma.
Lemma: Composition C∞(P,M)× C∞(M,N)→ C∞(P,N),
(f , g) 7→ g ◦ f , is smooth, since it maps smooth curves to smooth
curves
Corollary (of the chart structure):

TC∞(M,N) = C∞(M,TN)
C∞(M,πN)−−−−−−−−→ C∞(M,N).

Tf C∞(M,N) =

h :

TN

π
��

M
f //

h
==

N

 ∼= Γ(f ∗TN)



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [Kriegl, M 1997], 38.4.
A Lie group G is called regular if the following holds:

I For each smooth curve X ∈ C∞(R, g) there exists a curve
g ∈ C∞(R,G ) whose right logarithmic derivative is X , i.e.,{

g(0) = e

∂tg(t) = Te(µg(t))X (t) = X (t).g(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

I Put evolrG (X ) = g(1) where g is the unique solution required
above. Then evolrG : C∞(R, g)→ G is required to be C∞

also. We have EvolXt := g(t) = evolG (tX ).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.
Proof: Diff(M)

open−−−−→ C∞(M,M). Composition is smooth by

restriction. Inversion is smooth: If t 7→ f (t, ) is a smooth curve
in Diff(M), then f (t, )−1 satisfies the implicit equation
f (t, f (t, )−1(x)) = x , so by the finite dimensional implicit
function theorem, (t, x) 7→ f (t, )−1(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.
Let X (t, x) be a time dependent vector field on M (in
C∞(R,X(M))). Then Fl∂t×Xs (t, x) = (t + s,EvolX (t, x)) satisfies
the ODE ∂t Evol(t, x) = X (t,Evol(t, x)). If
X (s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of
diffeomorphism.



Exponential mapping of Diff(M)

The exponential mapping Exp : Xc(M)→ Diffc(M) satisfies
T0 Exp = Id, but it is not locally surjective near IdM : This is due
to [Freifeld67] and [Koppell70]. The strongest result in this
direction is [Grabowski88], where it is shown, that Diffc(M)
contains a smooth curve through IdM whose points (sauf IdM) are
free generators of an arcwise connected free subgroup which meets
the image of Exp only at the identity.
The same is true for groups real-analytic diffemorphisms, and
groups of Denjoy-Carleman ultradifferentiable diffeomorphisms (see
below).

The proof relies on the following argument: If g ◦ g has only
finitely many periodic orbits of even order, there must be an even
number of them. So f with exactly one periodic orbit of even order
cannot be of the form g ◦ g .



More on Diffeomorphism groups

I Let f ∈ Diff(S1) be fixed point free and in the image of Exp.
Then f is conjugate to some translation Rθ.

I A formula for the tangent mapping of the exponential of a Lie
group in the case G = Diff(M) looks as follows:

TX Exp .Y =

∫ 1

0
(FlX−t)

∗Y dt ◦ FlX1

I For each finite dimensional manifold M of dimension m > 1
and for M = S1 the mapping TX Exp is not injective for some
X arbitrarily near to 0.

I The mapping

Ad ◦Exp : Xc(M)→ Diff(M)→ L(Xc(M),Xc(M))

is not real analytic since
Ad(Exp(sX ))Y (x) = (FlX−s)∗Y (x) = Tx(FlXs )(Y (FlX−s(x))) is
not real analytic in s in general: choose Y constant in a chart
and X not real analytic.



I The group Diffω(M) of real analytic diffeomorphisms is a real
analytic regular Lie group in the convenient sense (see below).

I But is is not real analytic in the sense of extendability to
complexifications [Dahmen-Schmeding, 2015]. Thus it has no
complexification.

Lie subalgebras do not correspond to Lie subgroups
Let g ⊂ Xc(R2) be the closed Lie subalgebra of all vector fields
with compact support on R2 of the form
X (x , y) = f (x , y)∂x + g(x , y)∂y where g vanishes on the strip
0 ≤ x ≤ 1.
Claim. There is no Lie subgroup G of Diff(R2) corresponding to g.
If G exists there is a smooth curve t 7→ ft ∈ G ⊂ Diffc(R2). Then
Xt := (∂t ft) ◦ f −1

t is a smooth curve in g , and we may assume that
X0 = f ∂x where f = 1 on a large ball. But then
AdG (ft) = f ∗t : g 6→ g , a contradiction.



Denjoy-Carleman ultradifferentiable functions

Fix a sequence M = (Mk) of positive reals. A C∞-mapping f on
an open set U ⊂ R is said to be of class C {M} if for each compact
set K there ∃ρ > 0 such that the set{ f (k)(x)

ρk k! Mk
: x ∈ K , k ∈ N

}
is bounded.

In this way we get the so-called Denjoy–Carleman classes of
Roumieu type C {M}.
If we replace ∃ρ > 0 by a ∀ρ > 0 we obtain the Denjoy–Carleman
classes of Beurling type C (M).
We will denote by C [M] either of them, and write � for ∃ or ∀.



Properties of M Properties of C [M]

M increasing ⇒ Cω(U) ⊆ C{M}(U) ⊆ C∞(U)

M logarithmically convex ⇒ C [M](U) is a ring.
i.e., M2

k ≤ Mk−1 Mk+1 ∀ k . C [M] closed under compos.

Then: (Mk

M0
)1/k increasing, C [M] closed under appl.

Ml Mk ≤ M0 Ml+k ∀ l , k , inverse function thm.
Mk

1 Mk ≥ Mj Mα1 · · ·Mαj , C [M] is closed under
αi ∈ N>0, α1 + · · ·+ αj = k solving ODEs.

M weakly log-convex (always assumed below)
i.e., (k! Mk) log-convex

supk∈N>0
(Mk/Nk)1/k <∞ ⇔ C [M](U) ⊆ C [N](U)

supk∈N>0
(Mk)1/k <∞ ⇔ Cω(U) = C{M}(U)

limk→∞(Mk)1/k =∞ ⇔ Cω(U) ( C{M}(U)

supk∈N>0
(Mk+1/Mk)1/k <∞ ⇔ C [M] closed under derivat.



∑∞
k=0

Mk
(k+1)Mk+1

=∞ ⇔ C [M] is quasianalytic, i.e.,

or, equivalently, Ta : C [M](U)→ FM
n is inject.∑∞

k=1( 1
k!Mk

)1/k =∞ not surj.if Cω(U) ( C [M](U)∑∞
k=0

Mk
(k+1)Mk+1

<∞ ⇔ C [M] is non-quasianalytic.

⇒ C [M] part. of unity exist.

limk→∞(Mk)1/k =∞ and ⇔ Cω(U) ( C [M](U) and∑∞
k=j

Mk
(k+1)Mk+1

≤ C
Mj

Mj+1
Ta : C [M](U)→ FM

n is surj.:

for all j ∈ N and some C C [M] strongly non-quasianal.

M has moderate growth, necessary for

supj ,k∈N>0
(
Mj+k

Mj Mk
)1/(j+k) <∞ cartesian closedness

In [Kriegl,M,Rainer, 2009, 2011, 2013] the class C [M] was extended
to mappings between admissible convenient locally convex spaces.
It was proved that C [M] gives rise to a convenient calculus in the
following sense, then forms a cartesian closed category, provided
that M = (Mk) is log-convex and has moderate growth.



A differentiabilty class S is a convenient calculus if:

(1) For c∞-open sets in convenient vector spaces U ⊆ E ,V ⊆ F
we can define S-mappings, and S(U,F ) is again a convenient
space in a suitable lcs structure. c∞-open subsets in convenient
vector spaces and S-mappings form a category. Any S-mapping is
continuous for the c∞-topologies. If E ,F are of dim <∞ (or even
Banach spaces) then S(U,F ) is the classically defined space (this
is usually hard!).
(2) We have a linear S-diffeomorphism (G a convenient vs)
S(U × V ,G ) = S(U,S(V ,G )). (Cartesian Closedness)
(3) A map f : U → F is S iff λ ◦ f is S for all bounded linear
functionals λ in a set ⊆ E ′ which describes the bornology. (S is a
bornological concept). Linear S-mappings are exactly the bounded
ones, and L(E ,F ) (with the lc-topology of bounded convergence)
is bornologically embedded in S(E ,F ).
(4) A linear map ` : E → S(V ,G ) is S (⇔ bounded) iff
evx ◦` : E → G is S for each x ∈ F . (S-uniform boundedness
theorem).



Thm. Let S be a real differentiability class as above which admits
convenient calculus. Let A and B be finite dimensional S
manifolds with A compact. Then the space S(A,B) of all
S-mappings A→ B is a S-manifold modelled on convenient vector
spaces ΓS(f ∗TB) of S sections of pullback bundles along
f : A→ B. Moreover, a curve c : R→ S(A,B) is S if and only if
c∧ : R× A→ B is S. Similarly for Banach-plots.
Corollary. Let A1,A2 and B be finite dimensional S manifolds
with A1 and A2 compact. Then composition

S(A2,B)× S(A1,A2)→ S(A1,B), (f , g) 7→ f ◦ g

is S. This is best possible. For example, if S = C [M] for a weight
sequence M which is logarithmically convex and of moderate
growth, and if N = (Nk) is another with (Nk/Mk)1/k ↘ 0, then
composition is not CN .
Proof. Composition maps S-curves to S-curves, so it is S. For
S = CQ (i.e., Q is quasianalytic) we need Banach-plots.



Theorem. Let S be as above. Let A be a compact (⇒ finite
dimensional) S manifold. Then the group DiffS(A) of all
S-diffeomorphisms of A is an open subset of the S manifold
S(A,A). Moreover, it is a S-regular S Lie group: Inversion and
composition are S. Its Lie algebra consists of all S-vector fields on
A, with the negative of the usual bracket as Lie bracket. The
exponential mapping is S. It is not surjective onto any
neighborhood of IdA.
This is best possible, similarly as in the composition theorem.



A Zoo of diffeomorphism groups on Rn

Theorem. The following groups of diffeomorphisms on Rn are
C∞-regular Lie groups:
I DiffB(Rn), the group of all diffeomorphisms which differ from

the identity by a function which is bounded together with all
derivatives separately.

I DiffH∞(Rn), the group of all diffeomorphisms which differ
from the identity by a function in the intersection H∞ of all
Sobolev spaces Hk for k ∈ N≥0.

I DiffS(Rn), the group of all diffeomorphisms which fall rapidly
to the identity.

I Diffc(Rn) of all diffeomorphisms which differ from the identity
only on a compact subset. (well known since 1980)

[M, Mumford,2013], partly [B.Walter,2012]; for Denjoy-Carleman
ultradifferentiable diffeomorphisms [Kriegl, M, Rainer 2014].
In particular, DiffH∞(Rn) is essential if one wants to prove that the
geodesic equation of a right Riemannian invariant metric is
well-posed with the use of Sobolov space techniques.



An exotic zoo of diffeomorphisms on Rn

Various sets of C [M]-diffeomorphisms of Rn form C [M]-regular Lie
groups. We denote by DiffA the set of all mappings
Id +f : Rn → Rn, where infx∈Rn det(In + df (x)) > 0 and f ∈ A,
for any of the following classes A of test functions:
Global Denjoy–Carleman classes

B[M](Rn) =
{

f ∈ C∞(Rn) : �ρ > 0 sup
α∈Nn

‖∂αf ‖L∞(Rn)

ρ|α| |α|! M|α|
<∞

}
.

Sobolev–Denjoy–Carleman classes

W [M],p(Rn) =
{

f ∈ C∞(Rn) : �ρ > 0 sup
α∈Nn

‖∂αf ‖Lp(Rn)

ρ|α| |α|! M|α|
<∞

}
, 1 ≤ p <∞.

Gelfand–Shilov classes

S [M]
[L] (Rn) =

{
f ∈ C∞(Rn) : �ρ > 0 sup

p∈N
α∈Nn

‖(1 + |x |)p∂αf ‖L∞(Rn)

ρp+|α| p!|α|! LpM|α|
<∞

}
.

Denjoy–Carleman functions with compact support

D[M](Rn) = C [M](Rn) ∩ D(Rn) = B[M](Rn) ∩ D(Rn).



Note that D[M](Rn) is trivial unless M = (Mk) is
non-quasianalytic.
For the sequence L = (Lk) we just assume Lk ≥ 1 for all k . Note

that D[M] ⊆ S [M]
[L] , and hence S [M]

[L] is certainly non-trivial if

M = (Mk) is non-quasianalytic.

Theorem
Let M = (Mk) be log-convex and have moderate growth; in the
Beurling case we also assume C (M) ⊇ Cω. Assume that L = (Lk)
satisfies Lk ≥ 1 for all k. Let 1 ≤ p < q ≤ ∞. Then DiffB[M],

DiffW [M],p, DiffS [M]
[L] , and DiffD[M] are C [M]-regular Lie groups.

We have the following C [M] injective group homomorphisms

DiffD[M]�DiffS [M]
[L] �DiffW [M],p�DiffW [M],q(Rn)�DiffB[M].

Each group in this diagram is normal in the groups on its right.



Surprising behavior of right invariant weak
Riemannian metrics.
Right invariant metrics on Diffeomorphism groups

I Let 〈·, ·〉 : Xc(M)× Xc(M) 7→ R be a positive definite
bounded (weak) inner product.

I Induced Metric Diffc(M):

Gϕ(h, k) := 〈h ◦ ϕ−1, k ◦ ϕ−1〉, h, k ∈ Tϕ Diffc(M)

I Geodesic equation:

u = ϕt ◦ ϕ−1

ut = − ad(u)>u

with

〈ad(X )Y ,X 〉 = 〈−[X ,Y ],X 〉 = 〈Y , ad(X )>X 〉.



Fractional order Sobolev spaces on Rn

‖f ‖2
Hs(Rn) = ‖F−1(1 + |ξ|2)

s
2F f ‖2

L2(Rn),

where F is the Fouriertransform given by:

F f (ξ) = (2π)−
n
2

∫
Rn

e−i〈x ,ξ〉f (x)dx .

Equivalent norm:

‖f ‖2
H

s
(Rn)

= ‖f ‖2
L2(Rn) + ‖|ξ|sF f ‖2

L2(Rn).

Sobolev space of fractional order:

Hs(Rn) = {f ∈ L2(Rn) : ‖f ‖Hs(Rn) <∞}.

Hs(Rn) = Bs
22(Rn) = F s

22(Rn) = W s,p(Rn) [Triebel: Theory of function spaces.]



Fractional order Sobolev spaces on M

Equip M with a Riemannian metric of bounded geometry, i.e.,
(I ) The injectivity radius of (M, g) is positive.
(B∞) Each iterated covariant derivative of the curvature is
uniformly g -bounded: ‖∇iR‖g < Ci for i = 0, 1, 2, . . . .

[R. E. Greene. Complete metrics of bounded curvature on non-compact manifolds. ]



If (M, g) satisfies (I ) and (B∞) then the following holds:

1. (M, g) is complete.

2. There exists ε0 > 0 such that for each ε ∈ (0, ε0) there is a
countable cover of M by geodesic balls Bε(xα) such that the
cover of M by the balls B2ε(xα) is still uniformly locally finite.

3. Moreover there exists a partition of unity 1 =
∑

α ρα on M
such that ρα ≥ 0, ρα ∈ C∞c (M), supp(ρα) ⊂ B2ε(xα), and

|Dβ
u ρα| < Cβ where u are normal (Riemann exponential)

coordinates in B2ε(xα).

4. In each B2ε(xα), in normal coordinates, we have |Dβ
u gij | < C ′β,

|Dβ
u g ij | < C ′′β , and |Dβ

u Γm
ij | < C ′′′β , where all constants are

independent of α.

[Kordjukov 1991, Shubin 1992, Eichhorn 1991]



I We can define the Hs -norm of a function f on M:

‖f ‖2
Hs(M,g) =

∞∑
α=0

‖(ραf ) ◦ expxα ‖
2
Hs(Rn)

=
∞∑
α=0

‖F−1(1 + |ξ|2)
s
2F((ραf ) ◦ expxα)‖2

L2(Rn).

[Triebel: Theory of function spaces.]



The geodesic equation for the H0 metric on Diff(S1)

I One needs to calculate the adjoint ad>.

I Simplest case H0 metric:

〈Y , ad(X )>Z 〉X(S1) = 〈ad(X )Y ,Z 〉X(S1)

= 〈X ′Y − Y ′X ,Z 〉X(S1) =

∫
S1

(X ′Y − Y ′X )Zdx

=

∫
S1

Y (2X ′Z + XZ ′)dx

Therefore ad(X )>Z = 2X ′Z + XZ ′ and the geodesic equation
reads as

ut = − ad(u)>u = −3uxu.



The geodesic equation on Diffc(Rn)

Theorem (Geodesic equation for the Sobolev metric G
s
)

The geodesic equation for the metric G
s

on Diffc(Rn) is given by:

mk
t = −

n∑
i=1

(
mi (∂kui ) + ((∂im

k).ui + mk .(∂iu
i ))
)
,

uk = (2π)
n
2 | · |1−

n
2

∫ ∞
0

J n
2
−1(r .| · |) r

n
2

(1 + r 2s)
dr ?mk .

Here Jn/2−1 denotes the Bessel function of the first kind, which is
given by

Jα(r) =
1

π

∫ π

0
cos(αt − r sin t) dt − sin(απ)

π

∫ ∞
0

e−r sinh(t)−αt dt.

[BBHM2011b: Geodesic dist. for right invariant Sobolev metrics of fractional order on the diffeom. group.]



The geodesic equation on Diffc(R)

Theorem (Geodesic equation for the Sobolev metric G
s
)

The geodesic equation for the metric G
s

on Diffc(R) is given by:

mt = −2uxm − umx , u = (2π)
1
2

∫ ∞
0

J− 1
2
(r .| · |) r

1
2

(1 + r 2s)
dr ?m.

For s = k ∈ N we can rewrite this equation as:

mt = −2uxm − umx , m = u + ∂2k
x u.

For s = k + 1
2 ∈ N we obtain:

mt = −2uxm − umx , m = u +H∂2k+1
x u,

where H is the Hilbert transform: F(Hf )(ξ) = −i sgn(ξ)F f (ξ).

[BBHM2011b: Geodesic dist. for right invariant Sobolev metrics of fractional order on the diffeom. group.]



Relation to prominent PDE’s

I s = 0: Burger’s equation:

ut = −3uxu

I s = 1: Camassa Holm equation:

ut − uxxt + 3uux = 2uxuxx + uuxxx .

I Homogenous metric with s = 1
2 : Constantin-Lax-Majda

mt = −2uxm − umx , m = Huxx .

I Homogenous metric with s = 1: Hunter-Saxton equation

uxxt = −2uxuxx − uuxxx

I s = 0, Virasoro group: Korteweg-de Vries equation

ut + 3uxu + auxxx = 0, a = const.



Geodesic distance

Theorem
The geodesic equation for the right invariant Hs -metric is
wellposed

I locally on Diff(S1) for s ≥ 1/2 [Escher-Kolev, 2014]

I locally on DiffH∞(Rn) for s > 1 + n/2 [Bauer-Escher-Kolev,
2015]

I globally on Diff(M) for M = Rd or a closed manifold, for
s > 1 + dim(M)/2 [Bruveris-Vialard, 2014-2016]

The geodesic distance for the right invariant Hs -metric

I on Diff+(S1) vanishes for 0 ≤ s ≤ 1/2 and is positive for
s > 1/2

I on Diffc(M) vanishes for s < 1/2, and is positive for s ≥ 1

I on each Virasoro group vanishes for s = 0. The geodesic
equation here is the KdV-equation.

Due to [Bauer,Bruveris,Harms,M 2011 ff]



Groups related to Diffc(R)

The reflexive nuclear (LF) space C∞c (R) of smooth functions with
compact support leads to the well-known regular Lie group
Diffc(R).
Define C∞c,2(R) = {f : f ′ ∈ C∞c (R)} to be the space of
antiderivatives of smooth functions with compact support. It is a
reflexive nuclear (LF) space. We also define the space

C∞c,1(R) =
{

f ∈ C∞c,2(R) : f (−∞) = 0
}

of antiderivatives of the

form x 7→
∫ x
−∞ g dy with g ∈ C∞c (R).

Diffc,2(R) =
{
ϕ = Id +f : f ∈ C∞c,2(R), f ′ > −1

}
is the

corresponding group.
Define the two functionals Shift`,Shiftr : Diffc,2(R)→ R by

Shift`(ϕ) = ev−∞(f ) = lim
x→−∞

f (x), Shiftr (ϕ) = ev∞(f ) = lim
x→∞

f (x)

for ϕ(x) = x + f (x).



Then the short exact sequence of smooth homomorphisms of Lie
groups

Diffc(R) // // Diffc,2(R)
(Shift`,Shiftr ) // // (R2,+)

describes a semidirect product, where a smooth homomorphic
section s : R2 → Diffc,2(R) is given by the composition of flows
s(a, b) = FlX`a ◦FlXr

b for the vectorfields X` = f`∂x , Xr = fr∂x with
[X`,Xr ] = 0 where f`, fr ∈ C∞(R, [0, 1]) satisfy

f`(x) =

{
1 for x ≤ −1

0 for x ≥ 0,
fr (x) =

{
0 for x ≤ 0

1 for x ≥ 1.
(1)

The normal subgroup
Diffc,1(R) = ker(Shift`) = {ϕ = Id +f : f ∈ C∞c,1(R), f ′ > −1} of
diffeomorphisms which have no shift at −∞ will play an important
role later on.



Some diffeomorphism groups on R

We have the following smooth injective group homomorphisms:

Diffc(R) //

��

DiffS(R)

��

// DiffW∞,1(R)

��
Diffc,1(R) //

��

DiffS1(R) //

��

Diff
W∞,11

(R)

��
Diffc,2(R) // DiffS2(R) // Diff

W∞,12
(R) // DiffB(R)

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(R).
For S and W∞,1 this works the same as for C∞c . For H∞ = W∞,2

it is surprisingly more subtle.



Solving the Hunter-Saxton equation: The setting

We will denote by A(R) any of the spaces C∞c (R), S(R) or
W∞,1(R) and by DiffA(R) the corresponding groups Diffc(R),
DiffS(R) or DiffW∞,1(R).
Similarly A1(R) will denote any of the spaces C∞c,1(R), S1(R) or

W∞,1
1 (R) and DiffA1(R) the corresponding groups Diffc,1(R),

DiffS1(R) or Diff
W∞,11

(R).

The Ḣ1-metric. For DiffA(R) and DiffA1(R) the homogeneous
H1-metric is given by

Gϕ(X ◦ ϕ,Y ◦ ϕ) = GId(X ,Y ) =

∫
R

X ′(x)Y ′(x) dx ,

where X ,Y are elements of the Lie algebra A(R) or A1(R). We
shall also use the notation

〈·, ·〉Ḣ1 := G (·, ·) .



Theorem

On DiffA1(R) the geodesic equation is the Hunter-Saxton equation

(ϕt) ◦ ϕ−1 = u ut = −uux +
1

2

∫ x

−∞
(ux(z))2 dz ,

and the induced geodesic distance is positive.
On the other hand the geodesic equation does not exist on the
subgroups DiffA(R), since the adjoint ad(X )∗ǦId(X ) does not lie
in ǦId(A(R)) for all X ∈ A(R).
One obtains the classical form of the Hunter-Saxton equation by
differentiating:

utx = −uuxx −
1

2
u2
x ,

Note that DiffA(R) is a natural example of a non-robust
Riemannian manifold.



Theorem.

[BBM2014] [A version for Diff (S1) is by J.Lenells 2007,08,11]
We define the R-map by:

R :

{
DiffA1(R)→ A

(
R,R>−2

)
⊂ A(R,R)

ϕ 7→ 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 :


A
(
R,R>−2

)
→ DiffA1(R)

γ 7→ x +
1

4

∫ x

−∞
γ2 + 4γ dx .

The pull-back of the flat L2-metric via R is the Ḣ1-metric on
DiffA(R), i.e.,

R∗〈·, ·〉L2 = 〈·, ·〉Ḣ1 .

Thus the space
(
DiffA1(R), Ḣ1

)
is a flat space in the sense of

Riemannian geometry.
Here 〈·, ·〉L2 denotes the L2-inner product on A(R) with constant
volume dx .



Corollary

Given ϕ0, ϕ1 ∈ DiffA1(R) the geodesic ϕ(t, x) connecting them is
given by

ϕ(t, x) = R−1
(

(1− t)R(ϕ0) + tR(ϕ1)
)

(x)

and their geodesic distance is

d(ϕ0, ϕ1)2 = 4

∫
R

(
(ϕ′1)1/2 − (ϕ′0)1/2

)2
dx .

But this construction shows much more: For S1, C∞1 , and even for
many kinds of Denjoy-Carleman ultradifferentiable model spaces as
explained above. This shows that Sobolev space methods for
treating nonlinear PDEs is not the only method.



Corollary: The metric space
(
DiffA1(R), Ḣ1

)
is path-connected

and geodesically convex but not geodesically complete. In
particular, for every ϕ0 ∈ DiffA1(R) and h ∈ Tϕ0 DiffA1(R), h 6= 0
there exists a time T ∈ R such that ϕ(t, ·) is a geodesic for
|t| < |T | starting at ϕ0 with ϕt(0) = h, but ϕx(T , x) = 0 for some
x ∈ R.
Theorem: The square root representation on the diffeomorphism
group DiffA(R) is a bijective mapping, given by:

R :

{
DiffA(R)→

(
Im(R), ‖ · ‖L2

)
⊂
(
A
(
R,R>−2

)
, ‖ · ‖L2

)
ϕ 7→ 2

(
(ϕ′)1/2 − 1

)
.

The pull-back of the restriction of the flat L2-metric to Im(R) via R
is again the homogeneous Sobolev metric of order one. The image
of the R-map is the splitting submanifold of A(R,R>−2) given by:

Im(R) =
{
γ ∈ A(R,R>−2) : F (γ) :=

∫
R
γ
(
γ + 4

)
dx = 0

}
.



On the space DiffA(R) the geodesic equation does not exist. Still:
Corollary: The geodesic distance dA on DiffA(R) coincides with
the restriction of dA1 to DiffA(R), i.e., for ϕ0, ϕ1 ∈ DiffA(R) we
have

dA(ϕ0, ϕ1) = dA1(ϕ0, ϕ1) .



Continuing Geodesics Beyond the Group, or How Solutions
of the Hunter–Saxton Equation Blow Up

Consider a straight line γ(t) = γ0 + tγ1 in A(R,R). Then
γ(t) ∈ A(R,R>−2) precisely for t in an open interval (t0, t1) which
is finite at least on one side, say, at t1 <∞. Note that

ϕ(t)(x) := R−1(γ(t))(x) = x +
1

4

∫ x

−∞
γ2(t)(u) + 4γ(t)(u) du

makes sense for all t, that ϕ(t) : R→ R is smooth and that
ϕ(t)′(x) ≥ 0 for all x and t; thus, ϕ(t) is monotone
non-decreasing. Moreover, ϕ(t) is proper and surjective since γ(t)
vanishes at −∞ and ∞. Let

MonA1(R) :=
{

Id +f : f ∈ A1(R,R), f ′ ≥ −1
}

be the monoid (under composition) of all such functions.



For γ ∈ A(R,R) let x(γ) := min{x ∈ R ∪ {∞} : γ(x) = −2}.
Then for the line γ(t) from above we see that x(γ(t)) <∞ for all
t > t1. Thus, if the ‘geodesic’ ϕ(t) leaves the diffeomorphism
group at t1, it never comes back but stays inside
MonA1(R) \ DiffA1(R) for the rest of its life. In this sense,
MonA1(R) is a geodesic completion of DiffA1(R), and
MonA1(R) \ DiffA1(R) is the boundary.
What happens to the corresponding solution
u(t, x) = ϕt(t, ϕ(t)−1(x)) of the HS equation? In certain points it
has infinite derivative, it may be multivalued, or its graph can
contain whole vertical intervals. If we replace an element
ϕ ∈ MonA1(R) by its graph {(x , ϕ(x)) : x ∈ R} ⊂ R we get a
smooth ‘monotone’ submanifold, a smooth monotone relation.
The inverse ϕ−1 is then also a smooth monotone relation. Then
t 7→ {(x , u(t, x)) : x ∈ R} is a (smooth) curve of relations.
Checking that it satisfies the HS equation is an exercise left for the
interested reader. What we have described here is the flow
completion of the HS equation in the spirit of [Khesin M 2004].



Soliton-Like Solutions of the Hunter Saxton equation

For a right-invariant metric G on a diffeomorphism group one can
ask whether (generalized) solutions u(t) = ϕt(t) ◦ ϕ(t)−1 exist
such that the momenta Ǧ (u(t)) =: p(t) are distributions with
finite support. Here the geodesic ϕ(t) may exist only in some
suitable Sobolev completion of the diffeomorphism group. By the
general theory, the momentum Ad(ϕ(t))∗p(t) = ϕ(t)∗p(t) = p(0)
is constant. In other words,

p(t) = (ϕ(t)−1)∗p(0) = ϕ(t)∗p(0),

i.e., the momentum is carried forward by the flow and remains in
the space of distributions with finite support. The infinitesimal
version (take ∂t of the last expression) is

pt(t) = −Lu(t)p(t) = − adu(t)
∗ p(t).



The space of N-solitons of order 0 consists of momenta of the
form py ,a =

∑N
i=1 aiδyi with (y , a) ∈ R2N . Consider an initial

soliton p0 = Ǧ (u0) = −u′′0 =
∑N

i=1 ai δyi with y1 < y2 < · · · < yN .
Let H be the Heaviside function

H(x) =


0, x < 0,
1
2 , x = 0,

1, x > 0,

and D(x) = 0 for x ≤ 0 and D(x) = x for x > 0. We will see later
why the choice H(0) = 1

2 is the most natural one; note that the
behavior is called the Gibbs phenomenon. With these functions we
can write

u′′0 (x) = −
N∑
i=1

aiδyi (x)

u′0(x) = −
N∑
i=1

aiH(x − yi )

u0(x) = −
N∑
i=1

aiD(x − yi ).



We will assume henceforth that
∑N

i=1 ai = 0. Then u0(x) is
constant for x > yN and thus u0 ∈ H1

1 (R); with a slight abuse of
notation we assume that H1

1 (R) is defined similarly to H∞1 (R).
Defining Si =

∑i
j=1 aj we can write

u′0(x) = −
N∑
i=1

Si (H(x − yi )− H(x − yi+1)) .

This formula will be useful because
supp(H(.− yi )− H(.− yi+1)) = [yi , yi+1].
The evolution of the geodesic u(t) with initial value u(0) = u0 can
be described by a system of ordinary differential equations (ODEs)
for the variables (y , a).
Theorem The map (y , a) 7→

∑N
i=1 aiδyi is a Poisson map between

the canonical symplectic structure on R2N and the Lie–Poisson
structure on the dual T ∗Id DiffA(R) of the Lie algebra.



In particular, this means that the ODEs for (y , a) are Hamilton’s
equations for the pullback Hamiltonian

E (y , a) =
1

2
GId(u(y ,a), u(y ,a)),

with u(y ,a) = Ǧ−1(
∑N

i=1 aiδyi ) = −
∑N

i=1 aiD(.− yi ). We can
obtain the more explicit expression

E (y , a) =
1

2

∫
R

(
u(y ,a)(x)′

)2
dx =

1

2

∫
R

(
N∑
i=1

Si1[yi ,yi+1]

)2

dx

=
1

2

N∑
i=1

S2
i (yi+1 − yi ).

Hamilton’s equations ẏi = ∂E/∂ai , ȧi = −∂E/∂yi are in this case

ẏi (t) =
N−1∑
j=i

Si (t)(yi+1(t)− yi (t)),

ȧi (t) =
1

2

(
Si (t)2 − Si−1(t)2

)
.



Using the R-map we can find explicit solutions for these equations
as follows. Let us write ai (0) = ai and yi (0) = yi . The geodesic
with initial velocity u0 is given by

ϕ(t, x) = x +
1

4

∫ x

−∞
t2(u′0(y))2 + 4tu′0(y) dy

u(t, x) = u0(ϕ−1(t, x)) +
t

2

∫ ϕ−1(t,x)

−∞
u′0(y)2 dy .

First note that

ϕ′(t, x) =
(

1 +
t

2
u′0(x)

)2

u′(t, z) =
u′0
(
ϕ−1(t, z)

)
1 + t

2 u′0 (ϕ−1(t, z))
.



Using the identity H(ϕ−1(t, z)− yi ) = H(z − ϕ(t, yi )) we obtain

u′0
(
ϕ−1(t, z)

)
= −

N∑
i=1

aiH (z − ϕ(t, yi )) ,

and thus (
u′0
(
ϕ−1(t, z)

))′
= −

N∑
i=1

aiδϕ(t,yi )(z).

Combining these we obtain

u′′(t, z) =
1(

1 + t
2 u′0 (ϕ−1(t, z))

)2

(
−

N∑
i=1

aiδϕ(t,yi )(z)

)

=
N∑
i=1

−ai(
1 + t

2 u′0(yi )
)2
δϕ(t,yi )(z).

From here we can read off the solution of Hamilton’s equations

yi (t) = ϕ(t, yi )

ai (t) = −ai
(
1 + t

2 u′0(yi )
)−2

.



When trying to evaluate u′0(yi ),

u′0(yi ) = aiH(0)− Si ,

we see that u′0 is discontinuous at yi and it is here that we seem to
have the freedom to choose the value H(0). However, it turns out
that we observe the Gibbs phenomenon, i.e., only the choice
H(0) = 1

2 leads to solutions of Hamilton’s equations. Also, the
regularized theory of multiplications of distributions (Colombeau,
Kunzinger et.al.) leads to this choice. Thus we obtain

yi (t) = yi +
i−1∑
j=1

(
t2

4
S2
j − tSj

)
(yj+1 − yj)

ai (t) =
−ai(

1 + t
2

(
ai
2 − Si

))2
= −

(
Si

1− t
2 Si
− Si−1

1− t
2 Si−1

)
.

It can be checked by direct computation that these functions
indeed solve Hamilton’s equations.



Half-Lie groups associated to W [M],p ∩ L1 for 1 < p ≤ 2,
and their R-transforms
based on [Kriegl-M-Rainer, 2015, 2016]

We consider the convenient vector space
(W [M],p ∩ L1)2(R) :=

{
f ∈ C∞(R) : f ′ ∈W [M],p(R) ∩ L1(R)

}
of

bounded antiderivatives of functions in W [M],p(R) ∩ L1. Note that
the evaluations at −∞ and at ∞ again make sense. We consider
the exact and splitting sequence of convenient vector spaces

(W [M],p ∩ L1)0(R) � � // (W [M],p ∩ L1)2(R)
(ev−∞,ev∞) // // R2

where (W [M],p ∩ L1)0(R) is just the kernel of (ev−∞, ev∞).



The space (W [M],p ∩ L1)0(R) differs from W [M],p(R)∩ L1 if p > 1;
We also consider the space (W [M],p ∩ L1)1(R) = ker(ev−∞) of
functions in (W [M],p ∩ L1)2(R) with f (−∞) = 0. In the sequence
of injections

(W [M],p∩L1)0(R) ↪→ (W [M],p∩L1)1(R) ↪→ (W [M],p∩L1)2(R)�

� B[M](R)

each space is an ideal in B[M](R); this can be checked easily.
We consider corresponding groups:

Diff(W [M],p ∩ L1)0(R) ↪→ Diff(W [M],p ∩ L1)1(R) ↪→
↪→ Diff(W [M],p ∩ L1)2(R)� DiffB[M](R)

Each of these is a normal subgroup in each other in which it is
contained. Only DiffW [M],p(R) and DiffB[M](R) are C [M] Lie
groups. The other groups Diff(W [M],p ∩ L1)0(R),
Diff(W [M],p ∩ L1)1(R), and Diff(W [M],p ∩ L1)2(R) are only C [M]

half-Lie groups.



Thank you for listening!


