Groupoids, coadjoint dynamical systems of solvable Lie groups, and their C^* -algebras

Daniel Beltiță Institute of Mathematics of the Romanian Academy ***

Joint work with Ingrid Beltiță (IMAR) and José Galé (U. Zaragoza)

50th Seminar Sophus Lie Bedlewo, 30.09.2016

References

- I. BELTIŢĂ, D. B., J.E. GALÉ, Transference for Banach space representations of nilpotent Lie groups. *Preprint* arXiv:1511.08359 [math.RT].
- ► I. BELTIŢĂ, D. B., *C**-dynamical systems of solvable Lie groups. *Preprint* arXiv:1512.00558 [math.RT].
- ► I. BELTIŢĂ, D. B., On C*-algebras of exponential solvable Lie groups and their real ranks. J. Math. Anal. Appl. 437 (2016), no. 1, 51-58.

$$\widehat{\mathcal{G}} \ni [\pi] \rightsquigarrow \pi \colon \mathcal{C}^*(\mathcal{G}) \to \mathcal{B}(\mathcal{H}_{\pi}) \bullet \mathcal{G} \text{ type } \mathsf{I} \implies \mathcal{K}(\mathcal{H}_{\pi}) \subseteq \boxed{\pi(\mathcal{C}^*(\mathcal{G}))} \simeq \mathcal{C}^*(\mathcal{G})/\mathrm{Ker}\,\pi$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- $\widehat{G} \ni [\pi] \rightsquigarrow \pi \colon C^*(G) \to \mathcal{B}(\mathcal{H}_{\pi})$ $\bullet G \text{ type } \mathsf{I} \implies \mathcal{K}(\mathcal{H}_{\pi}) \subseteq \boxed{\pi(C^*(G))} \simeq C^*(G)/\mathrm{Ker}\,\pi$ New facts:
 - *G* nilpotent Lie group, $\pi: G \to \mathcal{B}(\mathcal{X})$ irred., unif. bdd., \mathcal{X} reflexive Banach sp. $\Longrightarrow \mathcal{K}(\mathcal{X}) = \overline{\pi(\mathcal{C}_c(G))}^{\|\cdot\|}$ (well known if \mathcal{X} is a Hibert space)

A B F A B F

- $\widehat{G} \ni [\pi] \rightsquigarrow \pi \colon C^*(G) \to \mathcal{B}(\mathcal{H}_{\pi})$ $\bullet G \text{ type } \mathsf{I} \implies \mathcal{K}(\mathcal{H}_{\pi}) \subseteq \boxed{\pi(C^*(G))} \simeq C^*(G)/\mathrm{Ker}\,\pi$ New facts:
 - *G* nilpotent Lie group, $\pi: G \to \mathcal{B}(\mathcal{X})$ irred., unif. bdd., \mathcal{X} reflexive Banach sp. $\Longrightarrow \mathcal{K}(\mathcal{X}) = \overline{\pi(\mathcal{C}_c(G))}^{\|\cdot\|}$ (well known if \mathcal{X} is a Hibert space)
 - ▶ if *G* exponential solvable Lie group, then:
 - $(\forall [\pi] \in \widehat{G})$ Ker $\pi \neq \{0\}$ in $C^*(\widehat{G})$
 - if *G* not nilpotent, then $(\exists [\pi] \in \widehat{G}) \quad \mathcal{K}(\mathcal{H}_{\pi}) \subsetneqq \pi(C^*(G))$ $\sim 0 \to \mathcal{K}(\mathcal{H}_{\pi}) \to \pi(C^*(G)) \to \pi(C^*(G))/\mathcal{K}(\mathcal{H}_{\pi}) \to 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\widehat{G} \ni [\pi] \rightsquigarrow \pi \colon C^*(G) \to \mathcal{B}(\mathcal{H}_{\pi}) \bullet G \text{ type } \mathsf{I} \implies \mathcal{K}(\mathcal{H}_{\pi}) \subseteq \boxed{\pi(C^*(G))} \simeq C^*(G)/\mathrm{Ker}\,\pi$$

New facts:

- *G* nilpotent Lie group, $\pi: G \to \mathcal{B}(\mathcal{X})$ irred., unif. bdd., \mathcal{X} reflexive Banach sp. $\Longrightarrow \mathcal{K}(\mathcal{X}) = \overline{\pi(\mathcal{C}_c(G))}^{\|\cdot\|}$ (well known if \mathcal{X} is a Hibert space)
- ▶ if *G* exponential solvable Lie group, then:

•
$$(\forall [\pi] \in \widehat{G})$$
 Ker $\pi \neq \{0\}$ in $C^*(\widehat{G})$

- ▶ if *G* not nilpotent, then $(\exists [\pi] \in \widehat{G}) \quad \mathcal{K}(\mathcal{H}_{\pi}) \subsetneqq \pi(C^*(G))$ $\rightarrow \boxed{0 \rightarrow \mathcal{K}(\mathcal{H}_{\pi}) \rightarrow \pi(C^*(G)) \rightarrow \pi(C^*(G))/\mathcal{K}(\mathcal{H}_{\pi}) \rightarrow 0}$
- proupoids → many examples of solvable Lie groups G (besides C ⋊ C*) for which

$$(\exists [\pi] \in \widehat{G}) \quad \operatorname{Ker} \pi = \{0\} \text{ in } C^*(G)$$

() < ()</p>

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations: $\int_{G} \varphi(a \cdot x) d\lambda(x) = \int_{G} \varphi(x) d\lambda(x) \text{ for } a \in G \text{ and } \varphi \in C_{c}(G)$

A B F A B F

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations: $\int_{G} \varphi(a \cdot x) d\lambda(x) = \int_{G} \varphi(x) d\lambda(x) \text{ for } a \in G \text{ and } \varphi \in C_{c}(G)$
- regular representation $\lambda : C_c(G) \to \mathcal{B}(L^2(G)), \ \lambda(f)\varphi = f * \varphi$, where $(f * \varphi)(x) = \int_G f(a)\varphi(a^{-1} \cdot x)d\lambda(a)$

イロト 不得下 イヨト イヨト 二日

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations: $\int_{G} \varphi(a \cdot x) d\lambda(x) = \int_{G} \varphi(x) d\lambda(x) \text{ for } a \in G \text{ and } \varphi \in C_{c}(G)$
- regular representation $\lambda : C_c(G) \to \mathcal{B}(L^2(G)), \ \lambda(f)\varphi = f * \varphi$, where $(f * \varphi)(x) = \int_G f(a)\varphi(a^{-1} \cdot x)d\lambda(a)$

•
$$C^*(G) := \overline{\lambda(\mathcal{C}_c(G))}^{\|\cdot\|} \subseteq \mathcal{B}(L^2(G))$$

This is actually the *reduced* C^* -algebra of G.

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations: $\int_{G} \varphi(a \cdot x) d\lambda(x) = \int_{G} \varphi(x) d\lambda(x) \text{ for } a \in G \text{ and } \varphi \in C_{c}(G)$
- regular representation $\lambda : C_c(G) \to \mathcal{B}(L^2(G)), \ \lambda(f)\varphi = f * \varphi$, where $(f * \varphi)(x) = \int_G f(a)\varphi(a^{-1} \cdot x)d\lambda(a)$

•
$$C^*(G) := \overline{\lambda(\mathcal{C}_c(G))}^{\|\cdot\|} \subseteq \mathcal{B}(L^2(G))$$

This is actually the *reduced* C^* -algebra of G.

• \widehat{G} = equivalence classes [π] of unitary irreducible repres. $\pi: G \to U(\mathcal{H}_{\pi})$

イロト 不得下 イヨト イヨト 二日

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations: $\int_{G} \varphi(a \cdot x) d\lambda(x) = \int_{G} \varphi(x) d\lambda(x) \text{ for } a \in G \text{ and } \varphi \in C_{c}(G)$
- regular representation $\lambda : C_c(G) \to \mathcal{B}(L^2(G)), \ \lambda(f)\varphi = f * \varphi$, where $(f * \varphi)(x) = \int_G f(a)\varphi(a^{-1} \cdot x)d\lambda(a)$

•
$$C^*(G) := \overline{\lambda(\mathcal{C}_c(G))}^{\|\cdot\|} \subseteq \mathcal{B}(L^2(G))$$

This is actually the *reduced* C^* -algebra of G.

- \widehat{G} = equivalence classes [π] of unitary irreducible repres. $\pi: G \to U(\mathcal{H}_{\pi})$
- $\widehat{\mathcal{A}} =$ equivalence classes of irreducible *-repres. of \mathcal{C}^* -alg. \mathcal{A}
- amenable group means: canonical inclusion $\widehat{C^*(G)} \hookrightarrow \widehat{G}$ is bijective

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Spectral topology

Recall: exponential Lie group \implies simply connected solvable Lie group \implies amenable group $\implies \widehat{G} \simeq \widehat{C^*(G)}$

Question

What topology can \widehat{G} have if G is a simply connected solvable Lie group?

Def. C*-algebra \mathcal{A} \rightsquigarrow spectrum $\widehat{\mathcal{A}} := \{ [\pi] \mid \pi : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H}_{\pi}) \text{ irred. } *\text{-repres.} \}$ \rightsquigarrow topology with open sets $\{ [\pi] \in \widehat{\mathcal{A}} \mid \pi \mid_{\mathcal{J}} \neq 0 \}$ for closed 2-sided ideals $\mathcal{J} \subseteq \mathcal{A}$

Spectral topology

Recall: exponential Lie group \implies simply connected solvable Lie group \implies amenable group $\implies \widehat{G} \simeq \widehat{C^*(G)}$

Question

What topology can \widehat{G} have if G is a simply connected solvable Lie group?

Def.
$$C^*$$
-algebra \mathcal{A}
 \rightsquigarrow spectrum $\widehat{\mathcal{A}} := \{ [\pi] \mid \pi : \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\pi}) \text{ irred. } *\text{-repres.} \}$
 \rightsquigarrow topology with open sets $\{ [\pi] \in \widehat{\mathcal{A}} \mid \pi \mid_{\mathcal{J}} \neq 0 \}$ for closed 2-sided ideals
 $\mathcal{J} \subseteq \mathcal{A}$

 $\bullet \ \mathcal{A} \ \text{commutative} \ \Longrightarrow \ \widehat{\mathcal{A}} \ \text{Hausdorff}$

Spectral topology

Recall: exponential Lie group \implies simply connected solvable Lie group \implies amenable group $\implies \widehat{G} \simeq \widehat{C^*(G)}$

Question

What topology can \widehat{G} have if G is a simply connected solvable Lie group?

- **Def.** C*-algebra \mathcal{A} \rightsquigarrow spectrum $\widehat{\mathcal{A}} := \{ [\pi] \mid \pi : \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\pi}) \text{ irred. } *\text{-repres.} \}$ \rightsquigarrow topology with open sets $\{ [\pi] \in \widehat{\mathcal{A}} \mid \pi \mid_{\mathcal{J}} \neq 0 \}$ for closed 2-sided ideals $\mathcal{J} \subseteq \mathcal{A}$
- \mathcal{A} commutative $\implies \widehat{\mathcal{A}}$ Hausdorff
- { $[\pi_0]$ } dense in $\widehat{\mathcal{A}} \iff \operatorname{Ker} \pi_0 = \{0\}$

Def. \mathcal{A} is *primitive* if it has faithful irreducible representations

・ 同 ト ・ ヨ ト ・ ヨ ト

Old fact: *G* nilpotent Lie group $\implies \pi(C^*(G)) = \mathcal{K}(\mathcal{H}_{\pi})$ for all $[\pi] \in \widehat{G}$ $\implies C^*(G)$ is not primitive

(日) (周) (三) (三)

Old fact: *G* nilpotent Lie group $\implies \pi(C^*(G)) = \mathcal{K}(\mathcal{H}_{\pi})$ for all $[\pi] \in \widehat{G}$ $\implies C^*(G)$ is not primitive

G exponential solvable Lie group $\implies C^*(G)$ is not primitive

(신문) (신문)

Old fact: *G* nilpotent Lie group $\implies \pi(C^*(G)) = \mathcal{K}(\mathcal{H}_{\pi})$ for all $[\pi] \in \widehat{G}$ $\implies C^*(G)$ is not primitive

G exponential solvable Lie group $\implies C^*(G)$ is not primitive

Proof. Let $[\pi] \in \widehat{G}$ with its coadjoint orbit $\mathcal{O}_{\pi} \subseteq \mathfrak{g}^*$.

• \mathcal{O}_{π} is relatively open in its closure.

•
$$\{[\pi]\}$$
 dense in $\widehat{G} \simeq \mathfrak{g}^*/\mathrm{Ad}_{\mathcal{G}}^*$

- $\implies \mathcal{O}_{\pi}$ dense in \mathfrak{g}^{*}
- $\implies \mathcal{O}_{\pi}$ open dense orbit
- $\implies \mathcal{O}_{\pi}$ is the unique open orbit

< 注入 < 注入

Old fact: *G* nilpotent Lie group $\implies \pi(C^*(G)) = \mathcal{K}(\mathcal{H}_{\pi})$ for all $[\pi] \in \widehat{G}$ $\implies C^*(G)$ is not primitive

G exponential solvable Lie group $\implies C^*(G)$ is not primitive

Proof. Let $[\pi] \in \widehat{G}$ with its coadjoint orbit $\mathcal{O}_{\pi} \subseteq \mathfrak{g}^*$.

• \mathcal{O}_{π} is relatively open in its closure.

•
$$\{[\pi]\}$$
 dense in $\widehat{\mathcal{G}} \simeq \mathfrak{g}^*/\mathrm{Ad}_{\mathcal{G}}^*$

- $\implies \mathcal{O}_{\pi}$ dense in \mathfrak{g}^{*}
- $\implies \mathcal{O}_{\pi}$ open dense orbit
- $\implies \mathcal{O}_{\pi}$ is the unique open orbit
- New fact: G has an even number of open coadjoint orbits

(e.g., the ax + b group has 2 open orbits, nilpotent groups have none)

Q.E.D.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let $\tau: G \to \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_0 \in \mathcal{V}$ and $G(v_0) := \{g \in G \mid \tau(g)v_0 = v_0\}.$

Theorem

Let $\tau: G \to \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_0 \in \mathcal{V}$ and $G(v_0) := \{g \in G \mid \tau(g)v_0 = v_0\}$. If $G/G(v_0)$ has a G-invariant Radon measure and μ is its pushforward through the map $G/G(v_0) \to \mathcal{V}$, $gG(v_0) \mapsto \tau(g)$, then one has:

(i) $\pi: G \ltimes \mathcal{V}_{\mathbb{R}}^* \to \mathcal{B}(L^2(\mathcal{V}, \mu)), (\pi(g, \xi)\varphi)(v) := e^{i\xi(v)}\varphi(\tau(g^{-1})v)$ is a continuous unitary irreducible representation.

Theorem

Let $\tau: G \to \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_0 \in \mathcal{V}$ and $G(v_0) := \{g \in G \mid \tau(g)v_0 = v_0\}$. If $G/G(v_0)$ has a G-invariant Radon measure and μ is its pushforward through the map $G/G(v_0) \to \mathcal{V}$, $gG(v_0) \mapsto \tau(g)$, then one has:

(i) $\pi: G \ltimes \mathcal{V}^*_{\mathbb{R}} \to \mathcal{B}(L^2(\mathcal{V}, \mu)), (\pi(g, \xi)\varphi)(v) := e^{i\xi(v)}\varphi(\tau(g^{-1})v)$ is a continuous unitary irreducible representation.

(ii) If
$$\overline{\tau(G)v_0} = \mathcal{V}$$
 and $G(v_0) = \{\mathbf{1}\}$, then $\overline{\{[\pi]\}} = \widehat{G \ltimes \mathcal{V}_{\mathbb{R}}^*}$.

Theorem

Let $\tau: G \to \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_0 \in \mathcal{V}$ and $G(v_0) := \{g \in G \mid \tau(g)v_0 = v_0\}$. If $G/G(v_0)$ has a G-invariant Radon measure and μ is its pushforward through the map $G/G(v_0) \to \mathcal{V}$, $gG(v_0) \mapsto \tau(g)$, then one has:

(i)
$$\pi: G \ltimes \mathcal{V}^*_{\mathbb{R}} \to \mathcal{B}(L^2(\mathcal{V}, \mu)), (\pi(g, \xi)\varphi)(v) := e^{i\xi(v)}\varphi(\tau(g^{-1})v)$$
 is a continuous unitary irreducible representation.

(ii) If
$$\overline{\tau(G)v_0} = \mathcal{V}$$
 and $G(v_0) = \{\mathbf{1}\}$, then $\overline{\{[\pi]\}} = \widehat{G \ltimes \mathcal{V}_{\mathbb{R}}^*}$.

Ex.: Let $\mathfrak{s} = \mathfrak{n}^- \dotplus \mathfrak{h} \dotplus \mathfrak{n}^+$ for a complex simple Lie alg. w.r.t. the Cartan subalgebra \mathfrak{h} . Define the Borel subalgebra $\mathfrak{g} := \mathfrak{h} \ltimes \mathfrak{n}^+$.

A B M A B M

Theorem

Let $\tau: G \to \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_0 \in \mathcal{V}$ and $G(v_0) := \{g \in G \mid \tau(g)v_0 = v_0\}$. If $G/G(v_0)$ has a G-invariant Radon measure and μ is its pushforward through the map $G/G(v_0) \to \mathcal{V}$, $gG(v_0) \mapsto \tau(g)$, then one has:

(i)
$$\pi: G \ltimes \mathcal{V}^*_{\mathbb{R}} \to \mathcal{B}(L^2(\mathcal{V}, \mu)), (\pi(g, \xi)\varphi)(v) := e^{i\xi(v)}\varphi(\tau(g^{-1})v)$$
 is a continuous unitary irreducible representation.

(ii) If
$$\overline{\tau(G)v_0} = \mathcal{V}$$
 and $G(v_0) = \{\mathbf{1}\}$, then $\overline{\{[\pi]\}} = \widehat{G \ltimes \mathcal{V}_{\mathbb{R}}^*}$.

Ex.: Let $\mathfrak{s} = \mathfrak{n}^- \dotplus \mathfrak{h} \dotplus \mathfrak{n}^+$ for a complex simple Lie alg. w.r.t. the Cartan subalgebra \mathfrak{h} . Define the Borel subalgebra $\mathfrak{g} := \mathfrak{h} \ltimes \mathfrak{n}^+$. Fact: *G* has a nonempty open coadjoint orbit $\iff \mathfrak{s} \in \{\mathfrak{so}(2\ell + 1, \mathbb{C}), \mathfrak{sp}(2\ell, \mathbb{C}), \mathfrak{so}(2\ell, \mathbb{C}) \text{ with } \ell \in 2\mathbb{N}, E_7, E_8, F_4, G_2\}$ For such *G*, the above theorem applies with $\tau = \mathrm{Ad}_G^*$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Theorem

Let $\tau: G \to \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_0 \in \mathcal{V}$ and $G(v_0) := \{g \in G \mid \tau(g)v_0 = v_0\}$. If $G/G(v_0)$ has a G-invariant Radon measure and μ is its pushforward through the map $G/G(v_0) \to \mathcal{V}$, $gG(v_0) \mapsto \tau(g)$, then one has:

(i)
$$\pi: G \ltimes \mathcal{V}^*_{\mathbb{R}} \to \mathcal{B}(L^2(\mathcal{V}, \mu)), (\pi(g, \xi)\varphi)(v) := e^{i\xi(v)}\varphi(\tau(g^{-1})v)$$
 is a continuous unitary irreducible representation.

(ii) If
$$\overline{\tau(G)v_0} = \mathcal{V}$$
 and $G(v_0) = \{\mathbf{1}\}$, then $\overline{\{[\pi]\}} = \widehat{G \ltimes \mathcal{V}_{\mathbb{R}}^*}$.

Ex.: Let $\mathfrak{s} = \mathfrak{n}^- \dotplus \mathfrak{h} \dotplus \mathfrak{n}^+$ for a complex simple Lie alg. w.r.t. the Cartan subalgebra \mathfrak{h} . Define the Borel subalgebra $\mathfrak{g} := \mathfrak{h} \ltimes \mathfrak{n}^+$. Fact: *G* has a nonempty open coadjoint orbit $\iff \mathfrak{s} \in \{\mathfrak{so}(2\ell+1,\mathbb{C}),\mathfrak{sp}(2\ell,\mathbb{C}),\mathfrak{so}(2\ell,\mathbb{C}) \text{ with } \ell \in 2\mathbb{N}, E_7, E_8, F_4, G_2\}$ For such *G*, the above theorem applies with $\tau = \mathrm{Ad}_G^*$. The simplest $G \ltimes \mathcal{V}_{\mathbb{R}}^*$ is 8-dimensional and is simply connected, solvable, of type I.

イロト イヨト イヨト イヨト

G exponential Lie group, hence simply connected, solvable, and amenable

G exponential Lie group, hence simply connected, solvable, and amenable

• $\operatorname{Ad}_{G}^{*} \colon G \times \mathfrak{g}^{*} \to \mathfrak{g}^{*}$, $(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g)\xi := \xi \circ \operatorname{Ad}_{G}(g^{-1})$

Recall: homeomorphisms $\widehat{C^*(G)} \simeq \widehat{G} \simeq \mathfrak{g}^* / \operatorname{Ad}_G^*$ $\widehat{C^*(G)}$ Hausdorff $\iff G = (\mathfrak{g}, +)$ i.e., G is commutative

 ${\it G}$ exponential Lie group, hence simply connected, solvable, and amenable

• $\operatorname{Ad}_{G}^{*} \colon G \times \mathfrak{g}^{*} \to \mathfrak{g}^{*}$, $(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g)\xi := \xi \circ \operatorname{Ad}_{G}(g^{-1})$

Recall: homeomorphisms $\widehat{C^*(G)} \simeq \widehat{G} \simeq \mathfrak{g}^*/\mathrm{Ad}_G^*$ $\widehat{C^*(G)}$ Hausdorff $\iff G = (\mathfrak{g}, +)$ i.e., G is commutative

• $0 \to \mathfrak{g} \to G \ltimes \mathfrak{g} \to G \to \mathbf{1}$ exact sequence of Lie groups $\sim \to 0 \to \mathcal{J} \to C^*(G \ltimes \mathfrak{g}) \to C^*(G) \to 0$

 ${\it G}$ exponential Lie group, hence simply connected, solvable, and amenable

• $\operatorname{Ad}_{G}^{*} \colon G \times \mathfrak{g}^{*} \to \mathfrak{g}^{*}$, $(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g)\xi := \xi \circ \operatorname{Ad}_{G}(g^{-1})$

Recall: homeomorphisms $\widehat{C^*(G)} \simeq \widehat{G} \simeq \mathfrak{g}^*/\mathrm{Ad}_G^*$ $\widehat{C^*(G)}$ Hausdorff $\iff G = (\mathfrak{g}, +)$ i.e., G is commutative

- $0 \to \mathfrak{g} \to G \ltimes \mathfrak{g} \to G \to \mathbf{1}$ exact sequence of Lie groups $\sim \to 0 \to \mathcal{J} \to C^*(G \ltimes \mathfrak{g}) \to C^*(G) \to 0$
- $C^*(G \ltimes \mathfrak{g}) \simeq G \ltimes C^*(\mathfrak{g}, +) \simeq G \ltimes \mathcal{C}_0(\mathfrak{g}^*)$ transformation group C^* -algebra of $(G, \mathfrak{g}^*, \operatorname{Ad}^*_G)$

イロト 不得下 イヨト イヨト 二日

 ${\it G}$ exponential Lie group, hence simply connected, solvable, and amenable

• $\operatorname{Ad}_{G}^{*} \colon G \times \mathfrak{g}^{*} \to \mathfrak{g}^{*}$, $(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g)\xi := \xi \circ \operatorname{Ad}_{G}(g^{-1})$

Recall: homeomorphisms $\widehat{C^*(G)} \simeq \widehat{G} \simeq \mathfrak{g}^*/\mathrm{Ad}_G^*$ $\widehat{C^*(G)}$ Hausdorff $\iff G = (\mathfrak{g}, +)$ i.e., G is commutative

- $0 \to \mathfrak{g} \to G \ltimes \mathfrak{g} \to G \to \mathbf{1}$ exact sequence of Lie groups $\sim \to 0 \to \mathcal{J} \to C^*(G \ltimes \mathfrak{g}) \to C^*(G) \to 0$
- $C^*(G \ltimes \mathfrak{g}) \simeq G \ltimes C^*(\mathfrak{g}, +) \simeq G \ltimes C_0(\mathfrak{g}^*)$ transformation group C^* -algebra of $(G, \mathfrak{g}^*, \operatorname{Ad}^*_G)$

Transformation groups are special cases of groupoids.

イロト 不得 とくき とくき とうき

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r \colon \mathcal{G} \to \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \rightsquigarrow$ its \mathcal{G} -orbit is $\mathcal{G}.x := \{r(g) \mid g \in \mathcal{G}, \ d(g) = x\}$

and isotropy group $\mathcal{G}(x) := \{g \in \mathcal{G} \mid d(g) = r(g) = x\}$

• $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \to \mathcal{G}^{(0)}$ • $x \in \mathcal{G}^{(0)} \rightsquigarrow$ its \mathcal{G} -orbit is $\mathcal{G}.x := \{r(g) \mid g \in \mathcal{G}, d(g) = x\}$ and isotropy group $\mathcal{G}(x) := \{g \in \mathcal{G} \mid d(g) = r(g) = x\}$

Example: group action $\mathcal{G} := G \times X \rightarrow X$, d(g,x) = x, r(g,x) = g.x

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \to \mathcal{G}^{(0)}$ • $x \in \mathcal{G}^{(0)} \rightsquigarrow$ its \mathcal{G} -orbit is $\mathcal{G}.x := \{r(g) \mid g \in \mathcal{G}, d(g) = x\}$ and isotropy group $\mathcal{G}(x) := \{g \in \mathcal{G} \mid d(g) = r(g) = x\}$ **Example:** group action $\mathcal{G} := \mathcal{G} \times X \to X, d(g, x) = x, r(g, x) = g.x$
- the quotient map $q\colon \mathcal{G}^{(0)} o \mathcal{G} \setminus \mathcal{G}^{(0)}$, $x\mapsto \mathcal{G}.x$
- \bullet select $\Sigma\subseteq \mathcal{G}^{(0)}$ that intersects every $\mathcal{G}\text{-orbit}$ at exactly one point

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣 !

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r \colon \mathcal{G} \to \mathcal{G}^{(0)}$ • $x \in \mathcal{G}^{(0)} \rightsquigarrow$ its \mathcal{G} -orbit is $\mathcal{G}.x := \{r(g) \mid g \in \mathcal{G}, \ d(g) = x\}$
- and isotropy group $\mathcal{G}(x) := \{g \in \mathcal{G} \mid d(g) = r(g) = x\}$ **Example:** group action $\mathcal{G} := \mathcal{G} \times X \to X$, d(g, x) = x, r(g, x) = g.x
- the quotient map $q: \mathcal{G}^{(0)} \to \mathcal{G} \setminus \mathcal{G}^{(0)}, x \mapsto \mathcal{G}.x$
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G} -orbit at exactly one point
- bundle of isotropy groups $\Pi \colon \Gamma = \bigsqcup_{x \in \Sigma} \mathcal{G}(x) \to \Sigma$,

・ロト ・聞ト ・ヨト ・ヨト - ヨ

- G ⇒ G⁽⁰⁾ → G groupoid, with its domain/range maps d, r: G → G⁽⁰⁾
 x ∈ G⁽⁰⁾ → its G-orbit is G.x := {r(g) | g ∈ G, d(g) = x} and isotropy group G(x) := {g ∈ G | d(g) = r(g) = x} Example: group action G := G × X → X, d(g,x) = x, r(g,x) = g.x
 the quotient map q: G⁽⁰⁾ → G \ G⁽⁰⁾, x → G.x
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G} -orbit at exactly one point
- bundle of isotropy groups $\Pi \colon \Gamma = \bigsqcup_{x \in \Sigma} \mathcal{G}(x) \to \Sigma$,
- define $heta:=(q|_{\Sigma})^{-1}\circ q\colon \mathcal{G}^{(0)} o \Sigma$ and the pullback of Π by heta

$$heta^{\downarrow\downarrow}(\Pi) := \{(x,h,y) \in \mathcal{G}^{(0)} imes \Gamma imes \mathcal{G}^{(0)} \mid heta(x) = \Pi(h) = heta(y)\}
ightarrow \mathcal{G}^{(0)}$$

with projections on the 1st/3rd coordinates as domain/range maps

イロト 不得下 イヨト イヨト 二日

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \to \mathcal{G}^{(0)}$ • $x \in \mathcal{G}^{(0)} \rightsquigarrow$ its \mathcal{G} -orbit is $\mathcal{G}.x := \{r(g) \mid g \in \mathcal{G}, d(g) = x\}$ and isotropy group $\mathcal{G}(x) := \{g \in \mathcal{G} \mid d(g) = r(g) = x\}$ **Example:** group action $\mathcal{G} := \mathcal{G} \times X \to X, d(g, x) = x, r(g, x) = g.x$ • the quotient map $q: \mathcal{G}^{(0)} \to \mathcal{G} \setminus \mathcal{G}^{(0)}, x \mapsto \mathcal{G}.x$
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G} -orbit at exactly one point
- bundle of isotropy groups $\Pi \colon \Gamma = \bigsqcup_{x \in \Sigma} \mathcal{G}(x) \to \Sigma$,
- define $heta:=(q|_{\Sigma})^{-1}\circ q\colon \mathcal{G}^{(0)} o \Sigma$ and the pullback of Π by heta

$$heta^{\downarrow\downarrow}(\Pi) := \{(x,h,y) \in \mathcal{G}^{(0)} imes \Gamma imes \mathcal{G}^{(0)} \mid heta(x) = \Pi(h) = heta(y)\}
ightarrow \mathcal{G}^{(0)}$$

with projections on the 1st/3rd coordinates as domain/range maps

• Any map $\sigma: \mathcal{G}^{(0)} \to \mathcal{G}$ with $d \circ \sigma = \mathrm{id}$ defines a groupoid isomorphism

$$\Phi \colon \mathcal{G} o heta^{\downarrow\downarrow}(\Pi), \quad \Phi(g) \coloneqq (r(g), \sigma(r(g))g\sigma(d(g))^{-1}, d(g))$$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ののの

a left Haar system of measures λ = {λ^x on r⁻¹(x)}_{x∈G⁽⁰⁾}, satisfying
continuity condition: G⁽⁰⁾ ∋ x ↦ λ(φ) := ∫ φdλ^x ∈ C is cont.
invariance condition: ∫ φ(gh)dλ^{d(g)}(h) = ∫ φ(h)dλ^{r(g)}(h) for all g ∈ G and φ ∈ C_c(G).

- a left Haar system of measures λ = {λ^x on r⁻¹(x)}_{x∈G⁽⁰⁾}, satisfying
 continuity condition: G⁽⁰⁾ ∋ x ↦ λ(φ) := ∫ φdλ^x ∈ C is cont.
 invariance condition: ∫ φ(gh)dλ^{d(g)}(h) = ∫ φ(h)dλ^{r(g)}(h) for all g ∈ G and φ ∈ C_c(G).
- $C_c(\mathcal{G})$ is an associative *-algebra with convolution

$$(\varphi * \psi)(g) := \int_{\mathcal{G}^{r(g)}} \varphi(h) \psi(h^{-1}g) \mathrm{d}\lambda^{r(g)}$$

and involution $\varphi^*(g) := \overline{\varphi(g^{-1})}$ for $g \in \mathcal{G}$ and $\varphi, \psi \in \mathcal{C}_c(\mathcal{G})$.

- a left Haar system of measures λ = {λ^x on r⁻¹(x)}_{x∈G⁽⁰⁾}, satisfying
 continuity condition: G⁽⁰⁾ ∋ x ↦ λ(φ) := ∫ φdλ^x ∈ C is cont.
 invariance condition: ∫ φ(gh)dλ^{d(g)}(h) = ∫ φ(h)dλ^{r(g)}(h) for all g ∈ G and φ ∈ C_c(G).
- $C_c(\mathcal{G})$ is an associative *-algebra with convolution

$$(\varphi * \psi)(g) := \int_{\mathcal{G}^{r(g)}} \varphi(h) \psi(h^{-1}g) \mathrm{d}\lambda^{r(g)}$$

and involution $\varphi^*(g) := \overline{\varphi(g^{-1})}$ for $g \in \mathcal{G}$ and $\varphi, \psi \in \mathcal{C}_c(\mathcal{G})$. • regular repres. $\Lambda : \mathcal{C}_c(\mathcal{G}) \to \bigoplus_{x \in \mathcal{G}^{(0)}} \mathcal{B}(L^2(\mathcal{G}, \lambda^x)), \Lambda(\varphi)\psi_x := \varphi * \psi_x$

- 本間 と えき と えき とうき

- a left Haar system of measures λ = {λ^x on r⁻¹(x)}_{x∈G⁽⁰⁾}, satisfying
 continuity condition: G⁽⁰⁾ ∋ x ↦ λ(φ) := ∫ φdλ^x ∈ C is cont.
 invariance condition: ∫ φ(gh)dλ^{d(g)}(h) = ∫ φ(h)dλ^{r(g)}(h) for all g ∈ G and φ ∈ C_c(G).
- $C_c(\mathcal{G})$ is an associative *-algebra with convolution

$$(\varphi * \psi)(g) := \int_{\mathcal{G}^{r(g)}} \varphi(h) \psi(h^{-1}g) \mathrm{d}\lambda^{r(g)}$$

and involution $\varphi^*(g) := \overline{\varphi(g^{-1})}$ for $g \in \mathcal{G}$ and $\varphi, \psi \in \mathcal{C}_c(\mathcal{G})$. • regular repres. $\Lambda : \mathcal{C}_c(\mathcal{G}) \to \bigoplus \mathcal{B}(L^2(\mathcal{G}, \lambda^x)), \Lambda(\varphi)\psi_x := \varphi * \psi_x$

- regular repres. A: $\mathcal{C}_{c}(\mathcal{G}) \to \bigoplus_{x \in \mathcal{G}^{(0)}} \mathcal{B}(\mathcal{L}^{2}(\mathcal{G}, \lambda^{*})), \ \mathcal{N}(\varphi)\psi_{x} := \varphi * \psi_{x}$
- $C^*(G) := \overline{\Lambda(\mathcal{C}(G))}^{\|\cdot\|}$

As in the case of groups, this is actually the *reduced* C^* -algebra of G.

- 本間 と えき と えき とうき

• $\theta: X \to Y$ has *local cross-sections* if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \to X$ continuous with $\tau(y) = x$ and $\theta \circ \tau = id_V$

A B > A B >

• $\theta: X \to Y$ has *local cross-sections* if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \to X$ continuous with $\tau(y) = x$ and $\theta \circ \tau = id_V$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections.

• $\theta: X \to Y$ has *local cross-sections* if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \to X$ continuous with $\tau(y) = x$ and $\theta \circ \tau = id_V$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections. If N is a 2nd countable, locally compact space, and $\theta: N \rightarrow \mathcal{G}^{(0)}$ is continuous with local cross-sections, $\models \theta^{\downarrow\downarrow}(\mathcal{G}) \rightrightarrows N$ is a locally compact groupoid with a left Haar system

• $\theta: X \to Y$ has *local cross-sections* if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \to X$ continuous with $\tau(y) = x$ and $\theta \circ \tau = id_V$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections. If N is a 2nd countable, locally compact space, and $\theta: N \rightarrow \mathcal{G}^{(0)}$ is continuous with local cross-sections, $\models \theta^{\downarrow\downarrow}(\mathcal{G}) \rightrightarrows N$ is a locally compact groupoid with a left Haar system

- the C^{*}-algebras C^{*}(\mathcal{G}) and C^{*}($\theta^{\downarrow\downarrow}(\mathcal{G})$) are Morita equivalent
- **Recall:** for separable C^* -algebras, \mathcal{A}_1 and \mathcal{A}_2 are Morita equivalent $\iff \mathcal{A}_1 \otimes \mathcal{K}(\mathcal{H}) \simeq \mathcal{A}_2 \otimes \mathcal{K}(\mathcal{H})$

イロト 不得下 イヨト イヨト 二日

• $\theta: X \to Y$ has *local cross-sections* if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \to X$ continuous with $\tau(y) = x$ and $\theta \circ \tau = id_V$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections. If N is a 2nd countable, locally compact space, and $\theta: N \rightarrow \mathcal{G}^{(0)}$ is continuous with local cross-sections,

• $\theta^{\downarrow\downarrow}(\mathcal{G})
ightarrow N$ is a locally compact groupoid with a left Haar system

• the C^{*}-algebras $C^*(\mathcal{G})$ and $C^*(\theta^{\downarrow\downarrow}(\mathcal{G}))$ are Morita equivalent

• **Recall:** for separable C^* -algebras, \mathcal{A}_1 and \mathcal{A}_2 are Morita equivalent $\iff \mathcal{A}_1 \otimes \mathcal{K}(\mathcal{H}) \simeq \mathcal{A}_2 \otimes \mathcal{K}(\mathcal{H})$ \implies isomorphic lattices of ideals, representation theories etc.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Daniel Beltiță (IMAR)

- 一司

- ∢ ∃ ▶

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles.

< ∃ > <

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles.

Def. A locally compact groupoid $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ is a *piecewise pullback of group bundles* with *pieces* V_k for k = 1, ..., n if

 $\ \, { \ \, { O } } \ \, V_k = U_k \setminus U_{k-1} \ \, { for some open } \ \, { {\cal G} - invariant subsets }$

$$\emptyset = U_0 \subseteq U_1 \subseteq \cdots \subseteq U_n = \mathcal{G}^{(0)}$$

G_{V_k} ≃ θ^{↓↓}_k(T_k) for an open continuous surjective map θ_k: V_k → S_k having local cross-sections and a group bundle T_k → S_k

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles.

Def. A locally compact groupoid $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ is a *piecewise pullback of group bundles* with *pieces* V_k for k = 1, ..., n if

• $V_k = U_k \setminus U_{k-1}$ for some open \mathcal{G} -invariant subsets

$$\emptyset = U_0 \subseteq U_1 \subseteq \cdots \subseteq U_n = \mathcal{G}^{(0)}$$

G G_{V_k} ≃ θ^{↓↓}_k(T_k) for an open continuous surjective map θ_k: V_k → S_k having local cross-sections and a group bundle T_k → S_k

There are closed 2-sided ideals $\{0\} = \mathcal{J}_0 \subseteq \mathcal{J}_1 \subseteq \cdots \subseteq \mathcal{J}_n = C^*(\mathcal{G})$ such that the $\mathcal{J}_k/\mathcal{J}_{k-1}$ is Morita equivalent to the C^* -algebra of sections of a continuous C^* -bundle whose fibers are C^* -algebras of isotropy groups of \mathcal{G} . Every isotropy group occurs for exactly one value of k.

Example 1 (nilpotent Lie group) The Heisenberg group \mathbb{H}_{2n+1} with $\mathfrak{h}_{2n+1} = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, $(x, y, t) \cdot (x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(\langle x, y' \rangle - \langle y, x' \rangle))$ • $0 \to C_0(\mathbb{R} \setminus \{0\}) \otimes \mathcal{K}(L^2(\mathbb{R}^n)) \to C^*(\mathbb{H}_{2n+1}) \to C_0(\mathbb{R}^{2n}) \to 0$

Example 1 (nilpotent Lie group)

The Heisenberg group \mathbb{H}_{2n+1} with $\mathfrak{h}_{2n+1} = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, $(x, y, t) \cdot (x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(\langle x, y' \rangle - \langle y, x' \rangle))$ • $0 \to C_0(\mathbb{R} \setminus \{0\}) \otimes \mathcal{K}(L^2(\mathbb{R}^n)) \to C^*(\mathbb{H}_{2n+1}) \to C_0(\mathbb{R}^{2n}) \to 0$

• space of coadjoint orbits: $(\mathbb{R} \setminus \{0\}) \sqcup \mathbb{R}^{2n} \simeq \widehat{\mathbb{H}}_{2n+1}$

Example 1 (nilpotent Lie group)

The Heisenberg group \mathbb{H}_{2n+1} with $\mathfrak{h}_{2n+1} = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, $(x, y, t) \cdot (x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(\langle x, y' \rangle - \langle y, x' \rangle))$

- 0 $\rightarrow \mathcal{C}_0(\mathbb{R} \setminus \{0\}) \otimes \mathcal{K}(L^2(\mathbb{R}^n)) \rightarrow C^*(\mathbb{H}_{2n+1}) \xrightarrow{\sim} \mathcal{C}_0(\mathbb{R}^{2n}) \rightarrow 0$
- space of coadjoint orbits: $(\mathbb{R} \setminus \{0\}) \sqcup \mathbb{R}^{2n} \simeq \widehat{\mathbb{H}}_{2n+1}$

Example 2 (solvable Lie group)
The
$$ax + b$$
 group with $a = e^t > 0$: $\mathfrak{g} = \mathbb{R} \times \mathbb{R}$, $(t, b) \cdot (s, c) = (t + s, e^t c + b)$

Example 1 (nilpotent Lie group)

The Heisenberg group \mathbb{H}_{2n+1} with $\mathfrak{h}_{2n+1} = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, $(x, y, t) \cdot (x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(\langle x, y' \rangle - \langle y, x' \rangle))$ • 0 $\rightarrow C_0(\mathbb{R} \setminus \{0\}) \otimes \mathcal{K}(L^2(\mathbb{R}^n)) \rightarrow C^*(\mathbb{H}_{2n+1}) \rightarrow C_0(\mathbb{R}^{2n}) \rightarrow 0$

- space of coadjoint orbits: $(\mathbb{R} \setminus \{0\}) \sqcup \mathbb{R}^{2n} \simeq \widehat{\mathbb{H}}_{2n+1}$

Example 2 (solvable Lie group)
The
$$ax + b$$
 group with $a = e^t > 0$: $\mathfrak{g} = \mathbb{R} \times \mathbb{R}$,
 $(t, b) \cdot (s, c) = (t + s, e^t c + b)$

•
$$0 \to \mathbb{C}^2 \otimes \mathcal{K}(L^2(\mathbb{R}^2)) \to C^*(G) \to \mathcal{C}_0(\mathbb{R}) \to 0$$

Example 1 (nilpotent Lie group)

The Heisenberg group \mathbb{H}_{2n+1} with $\mathfrak{h}_{2n+1} = \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, $(x, y, t) \cdot (x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(\langle x, y' \rangle - \langle y, x' \rangle))$

- 0 $\rightarrow \mathcal{C}_0(\mathbb{R} \setminus \{0\}) \otimes \mathcal{K}(L^2(\mathbb{R}^n)) \rightarrow C^*(\mathbb{H}_{2n+1}) \xrightarrow{\sim} \mathcal{C}_0(\mathbb{R}^{2n}) \rightarrow 0$
- space of coadjoint orbits: $(\mathbb{R} \setminus \{0\}) \sqcup \mathbb{R}^{2n} \simeq \widehat{\mathbb{H}}_{2n+1}$

Example 2 (solvable Lie group) The ax + b group with $a = e^t > 0$: $\mathfrak{g} = \mathbb{R} \times \mathbb{R}$, $(t, b) \cdot (s, c) = (t + s, e^t c + b)$

- $0 \to \mathbb{C}^2 \otimes \mathcal{K}(L^2(\mathbb{R}^2)) \to C^*(\mathcal{G}) \to \mathcal{C}_0(\mathbb{R}) \to 0$
- space of coadjoint orbits: $\{2 \text{ open points}\} \sqcup \mathbb{R} \simeq \widehat{G}$

イロト イ団ト イヨト イヨト 三臣

Groupoids with dense open orbits

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid, having a Haar system.

Proposition 1

Assume the orbits of $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ are locally closed. Then $\mathcal{C}^*(\mathcal{G}) \simeq \mathcal{K}(\mathcal{H}) \iff \mathcal{G}$ is a pair groupoid.

A B F A B F

Groupoids with dense open orbits

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid, having a Haar system.

Proposition 1

Assume the orbits of $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ are locally closed. Then $\mathcal{C}^*(\mathcal{G}) \simeq \mathcal{K}(\mathcal{H}) \iff \mathcal{G}$ is a pair groupoid.

Proposition 2

If $U \subseteq \mathcal{G}^{(0)}$ is any open \mathcal{G} -invariant set and $x_0 \in U$, then one has:

(i) For every $x \in \mathcal{G}^{(0)} \setminus U$ the ideal $C^*(\mathcal{G}_U)$ of $C^*(\mathcal{G})$ is contained in the kernel of the regular representation $\Lambda_x \colon C^*(\mathcal{G}) \to \mathcal{L}(L^2(\mathcal{G}^x))$.

(ii) If U is an orbit of
$$\mathcal{G}$$
, then

$$\operatorname{Ker} \Lambda_{x_0} = \{0\} \iff \overline{U} = \mathcal{G}^{(0)}$$

- 本語 医 本語 医 二語