Groupoids, coadjoint dynamical systems of solvable Lie groups, and their C^{*}-algebras

Daniel Beltiță
Institute of Mathematics of the Romanian Academy ***

Joint work with Ingrid Beltiță (IMAR) and José Galé (U. Zaragoza)

50th Seminar Sophus Lie
Bedlewo, 30.09.2016

References

- I. Beltiţă, D. B., J.E. Galé, Transference for Banach space representations of nilpotent Lie groups. Preprint arXiv:1511.08359 [math.RT].
- I. BeltiţăA, D. B., C*-dynamical systems of solvable Lie groups. Preprint arXiv:1512.00558 [math.RT].
- I. BeltiţăĂ, D. B., On C*-algebras of exponential solvable Lie groups and their real ranks. J. Math. Anal. Appl. 437 (2016), no. 1, 51-58.

Overview

$\widehat{G} \ni[\pi] \leadsto \pi: C^{*}(G) \rightarrow \mathcal{B}\left(\mathcal{H}_{\pi}\right)$

- G type $\mathrm{I} \Longrightarrow \mathcal{K}\left(\mathcal{H}_{\pi}\right) \subseteq \pi\left(C^{*}(G)\right) \simeq C^{*}(G) / \operatorname{Ker} \pi$

Overview

$\widehat{G} \ni[\pi] \leadsto \pi: C^{*}(G) \rightarrow \mathcal{B}\left(\mathcal{H}_{\pi}\right)$

- G type $\mathrm{I} \Longrightarrow \mathcal{K}\left(\mathcal{H}_{\pi}\right) \subseteq \pi\left(C^{*}(G)\right) \simeq C^{*}(G) / \operatorname{Ker} \pi$

New facts:

- G nilpotent Lie group, $\pi: G \rightarrow \mathcal{B}(\mathcal{X})$ irred., unif. bdd., \mathcal{X} reflexive Banach sp. $\Longrightarrow \mathcal{K}(\mathcal{X})=\overline{\pi\left(\mathcal{C}_{c}(G)\right)}{ }^{1 \cdot \|}$
(well known if \mathcal{X} is a Hibert space)

Overview

$\widehat{G} \ni[\pi] \leadsto \pi: C^{*}(G) \rightarrow \mathcal{B}\left(\mathcal{H}_{\pi}\right)$

- G type $I \Longrightarrow \mathcal{K}\left(\mathcal{H}_{\pi}\right) \subseteq \pi\left(C^{*}(G)\right) \simeq C^{*}(G) / \operatorname{Ker} \pi$

New facts:

- G nilpotent Lie group, $\pi: G \rightarrow \mathcal{B}(\mathcal{X})$ irred., unif. bdd., \mathcal{X} reflexive Banach sp. $\Longrightarrow \mathcal{K}(\mathcal{X})=\overline{\pi\left(\mathcal{C}_{c}(G)\right)}{ }^{1 \cdot \|}$
(well known if \mathcal{X} is a Hibert space)
- if G exponential solvable Lie group, then:
- $(\forall[\pi] \in \widehat{G}) \quad \operatorname{Ker} \pi \neq\{0\}$ in $C^{*}(G)$
- if G not nilpotent, then $(\exists[\pi] \in \widehat{G}) \mathcal{K}\left(\mathcal{H}_{\pi}\right) \nsucceq \pi\left(C^{*}(G)\right)$
$\leadsto 0 \rightarrow \mathcal{K}\left(\mathcal{H}_{\pi}\right) \rightarrow \pi\left(C^{*}(G)\right) \rightarrow \pi\left(C^{*}(G)\right) / \mathcal{K}\left(\mathcal{H}_{\pi}\right) \rightarrow 0$

Overview

$\widehat{G} \ni[\pi] \leadsto \pi: C^{*}(G) \rightarrow \mathcal{B}\left(\mathcal{H}_{\pi}\right)$

- G type $\mathrm{I} \Longrightarrow \mathcal{K}\left(\mathcal{H}_{\pi}\right) \subseteq \pi\left(C^{*}(G)\right) \simeq C^{*}(G) / \operatorname{Ker} \pi$

New facts:

- G nilpotent Lie group, $\pi: G \rightarrow \mathcal{B}(\mathcal{X})$ irred., unif. bdd., \mathcal{X} reflexive Banach sp. $\Longrightarrow \mathcal{K}(\mathcal{X})=\overline{\pi\left(\mathcal{C}_{c}(G)\right)}{ }^{1 \cdot \|}$
(well known if \mathcal{X} is a Hibert space)
- if G exponential solvable Lie group, then:
- $(\forall[\pi] \in \widehat{G}) \quad \operatorname{Ker} \pi \neq\{0\}$ in $C^{*}(G)$
- if G not nilpotent, then $(\exists[\pi] \in \widehat{G}) \quad \mathcal{K}\left(\mathcal{H}_{\pi}\right) \varsubsetneqq \pi\left(C^{*}(G)\right)$

$$
\sim 0 \rightarrow \mathcal{K}\left(\mathcal{H}_{\pi}\right) \rightarrow \pi\left(C^{*}(G)\right) \rightarrow \pi\left(C^{*}(G)\right) / \mathcal{K}\left(\mathcal{H}_{\pi}\right) \rightarrow 0
$$

- groupoids \leadsto many examples of solvable Lie groups G (besides $\mathbb{C} \rtimes \mathbb{C}^{*}$) for which

$$
(\exists[\pi] \in \widehat{G}) \quad \operatorname{Ker} \pi=\{0\} \text { in } C^{*}(G)
$$

Group C*-algebras

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations:

$$
\int_{G} \varphi(a \cdot x) \mathrm{d} \lambda(x)=\int_{G} \varphi(x) \mathrm{d} \lambda(x) \text { for } a \in G \text { and } \varphi \in \mathcal{C}_{C}(G)
$$

Group C*-algebras

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations:

$$
\int_{G} \varphi(a \cdot x) \mathrm{d} \lambda(x)=\int_{G} \varphi(x) \mathrm{d} \lambda(x) \text { for } a \in G \text { and } \varphi \in \mathcal{C}_{c}(G)
$$

- regular representation $\lambda: \mathcal{C}_{c}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right), \lambda(f) \varphi=f * \varphi$, where $(f * \varphi)(x)=\int_{G} f(a) \varphi\left(a^{-1} \cdot x\right) \mathrm{d} \lambda(a)$

Group C*-algebras

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations:

$$
\int_{G} \varphi(a \cdot x) \mathrm{d} \lambda(x)=\int_{G} \varphi(x) \mathrm{d} \lambda(x) \text { for } a \in G \text { and } \varphi \in \mathcal{C}_{c}(G)
$$

- regular representation $\lambda: \mathcal{C}_{c}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right), \lambda(f) \varphi=f * \varphi$, where $(f * \varphi)(x)=\int_{G} f(a) \varphi\left(a^{-1} \cdot x\right) \mathrm{d} \lambda(a)$
- $C^{*}(G):=\overline{\lambda\left(\mathcal{C}_{c}(G)\right)}{ }^{\|\cdot\|} \subseteq \mathcal{B}\left(L^{2}(G)\right)$

This is actually the reduced C^{*}-algebra of G.

Group C*-algebras

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations:

$$
\int_{G} \varphi(a \cdot x) \mathrm{d} \lambda(x)=\int_{G} \varphi(x) \mathrm{d} \lambda(x) \text { for } a \in G \text { and } \varphi \in \mathcal{C}_{c}(G)
$$

- regular representation $\lambda: \mathcal{C}_{c}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right), \lambda(f) \varphi=f * \varphi$, where $(f * \varphi)(x)=\int_{G} f(a) \varphi\left(a^{-1} \cdot x\right) \mathrm{d} \lambda(a)$
- $C^{*}(G):=\overline{\lambda\left(\mathcal{C}_{c}(G)\right)}{ }^{\|\cdot\|} \subseteq \mathcal{B}\left(L^{2}(G)\right)$

This is actually the reduced C^{*}-algebra of G.

- $\widehat{G}=$ equivalence classes [π] of unitary irreducible repres. $\pi: G \rightarrow U\left(\mathcal{H}_{\pi}\right)$

Group C*-algebras

- G locally compact group (e.g., Lie group)
- There is a Haar measure λ on G, invariant under left translations:

$$
\int_{G} \varphi(a \cdot x) \mathrm{d} \lambda(x)=\int_{G} \varphi(x) \mathrm{d} \lambda(x) \text { for } a \in G \text { and } \varphi \in \mathcal{C}_{c}(G)
$$

- regular representation $\lambda: \mathcal{C}_{c}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right), \lambda(f) \varphi=f * \varphi$, where $(f * \varphi)(x)=\int_{G} f(a) \varphi\left(a^{-1} \cdot x\right) \mathrm{d} \lambda(a)$
- $C^{*}(G):=\overline{\lambda\left(\mathcal{C}_{c}(G)\right)}{ }^{\|\cdot\|} \subseteq \mathcal{B}\left(L^{2}(G)\right)$

This is actually the reduced C^{*}-algebra of G.

- $\widehat{G}=$ equivalence classes [π] of unitary irreducible repres. π : $G \rightarrow U\left(\mathcal{H}_{\pi}\right)$
- $\widehat{\mathcal{A}}=$ equivalence classes of irreducible $*$-repres. of C^{*}-alg. \mathcal{A}
- amenable group means: canonical inclusion $\widehat{C^{*}(G)} \hookrightarrow \widehat{G}$ is bijective

Spectral topology

Recall: exponential Lie group \Longrightarrow simply connected solvable Lie group \Longrightarrow amenable group $\Longrightarrow \widehat{G} \simeq \widehat{C^{*}(G)}$

Question

What topology can \widehat{G} have if G is a simply connected solvable Lie group?
Def. C^{*}-algebra \mathcal{A}
\leadsto spectrum $\widehat{\mathcal{A}}:=\left\{[\pi] \mid \pi: \mathcal{A} \rightarrow B\left(\mathcal{H}_{\pi}\right)\right.$ irred. *-repres. $\}$
\leadsto topology with open sets $\left\{[\pi] \in \widehat{\mathcal{A}}|\pi|_{\mathcal{J}} \not \equiv 0\right\}$ for closed 2-sided ideals
$\mathcal{J} \subseteq \mathcal{A}$

Spectral topology

Recall: exponential Lie group \Longrightarrow simply connected solvable Lie group \Longrightarrow amenable group $\Longrightarrow \widehat{G} \simeq \widehat{C^{*}(G)}$

Question

What topology can \widehat{G} have if G is a simply connected solvable Lie group?
Def. C^{*}-algebra \mathcal{A}
\leadsto spectrum $\widehat{\mathcal{A}}:=\left\{[\pi] \mid \pi: \mathcal{A} \rightarrow B\left(\mathcal{H}_{\pi}\right)\right.$ irred. *-repres. $\}$
\leadsto topology with open sets $\left\{[\pi] \in \widehat{\mathcal{A}}|\pi|_{\mathcal{J}} \not \equiv 0\right\}$ for closed 2-sided ideals
$\mathcal{J} \subseteq \mathcal{A}$

- \mathcal{A} commutative $\Longrightarrow \widehat{\mathcal{A}}$ Hausdorff

Spectral topology

Recall: exponential Lie group \Longrightarrow simply connected solvable Lie group \Longrightarrow amenable group $\Longrightarrow \widehat{G} \simeq \widehat{C^{*}(G)}$

Question

What topology can \widehat{G} have if G is a simply connected solvable Lie group?
Def. C^{*}-algebra \mathcal{A}
\leadsto spectrum $\widehat{\mathcal{A}}:=\left\{[\pi] \mid \pi: \mathcal{A} \rightarrow B\left(\mathcal{H}_{\pi}\right)\right.$ irred. *-repres. $\}$
\leadsto topology with open sets $\left\{[\pi] \in \widehat{\mathcal{A}}|\pi|_{\mathcal{J}} \not \equiv 0\right\}$ for closed 2-sided ideals
$\mathcal{J} \subseteq \mathcal{A}$

- \mathcal{A} commutative $\Longrightarrow \widehat{\mathcal{A}}$ Hausdorff
- $\left\{\left[\pi_{0}\right]\right\}$ dense in $\widehat{\mathcal{A}} \Longleftrightarrow \operatorname{Ker} \pi_{0}=\{0\}$

Def. \mathcal{A} is primitive if it has faithful irreducible representations

When is $C^{*}(G)$ primitive?

Old fact: G nilpotent Lie group
$\Longrightarrow \pi\left(C^{*}(G)\right)=\mathcal{K}\left(\mathcal{H}_{\pi}\right)$ for all $[\pi] \in \widehat{G}$
$\Longrightarrow C^{*}(G)$ is not primitive

When is $C^{*}(G)$ primitive?

Old fact: G nilpotent Lie group
$\Longrightarrow \pi\left(C^{*}(G)\right)=\mathcal{K}\left(\mathcal{H}_{\pi}\right)$ for all $[\pi] \in \widehat{G}$
$\Longrightarrow C^{*}(G)$ is not primitive
G exponential solvable Lie group $\Longrightarrow C^{*}(G)$ is not primitive

When is $C^{*}(G)$ primitive?

Old fact: G nilpotent Lie group
$\Longrightarrow \pi\left(C^{*}(G)\right)=\mathcal{K}\left(\mathcal{H}_{\pi}\right)$ for all $[\pi] \in \widehat{G}$
$\Longrightarrow C^{*}(G)$ is not primitive
G exponential solvable Lie group $\Longrightarrow C^{*}(G)$ is not primitive
Proof. Let $[\pi] \in \widehat{G}$ with its coadjoint orbit $\mathcal{O}_{\pi} \subseteq \mathfrak{g}^{*}$.

- \mathcal{O}_{π} is relatively open in its closure.
- $\{[\pi]\}$ dense in $\widehat{G} \simeq \mathfrak{g}^{*} / \operatorname{Ad}_{G}^{*}$
$\Longrightarrow \mathcal{O}_{\pi}$ dense in \mathfrak{g}^{*}
$\Longrightarrow \mathcal{O}_{\pi}$ open dense orbit
$\Longrightarrow \mathcal{O}_{\pi}$ is the unique open orbit

When is $C^{*}(G)$ primitive?

Old fact: G nilpotent Lie group
$\Longrightarrow \pi\left(C^{*}(G)\right)=\mathcal{K}\left(\mathcal{H}_{\pi}\right)$ for all $[\pi] \in \widehat{G}$
$\Longrightarrow C^{*}(G)$ is not primitive
G exponential solvable Lie group $\Longrightarrow C^{*}(G)$ is not primitive
Proof. Let $[\pi] \in \widehat{G}$ with its coadjoint orbit $\mathcal{O}_{\pi} \subseteq \mathfrak{g}^{*}$.

- \mathcal{O}_{π} is relatively open in its closure.
- $\{[\pi]\}$ dense in $\widehat{G} \simeq \mathfrak{g}^{*} / \operatorname{Ad}_{G}^{*}$
$\Longrightarrow \mathcal{O}_{\pi}$ dense in \mathfrak{g}^{*}
$\Longrightarrow \mathcal{O}_{\pi}$ open dense orbit
$\Longrightarrow \mathcal{O}_{\pi}$ is the unique open orbit
- New fact: G has an even number of open coadjoint orbits (e.g., the $a x+b$ group has 2 open orbits, nilpotent groups have none)
Q.E.D.

Connected Lie groups whose C^{*}-algebras are primitive

Theorem
Let $\tau: G \rightarrow \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_{0} \in \mathcal{V}$ and $G\left(v_{0}\right):=\left\{g \in G \mid \tau(g) v_{0}=v_{0}\right\}$.

Connected Lie groups whose C^{*}-algebras are primitive

Theorem

Let $\tau: G \rightarrow \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_{0} \in \mathcal{V}$ and $G\left(v_{0}\right):=\left\{g \in G \mid \tau(g) v_{0}=v_{0}\right\}$. If $G / G\left(v_{0}\right)$ has a G-invariant Radon measure and μ is its pushforward through the map $G / G\left(v_{0}\right) \rightarrow \mathcal{V}, g G\left(v_{0}\right) \mapsto \tau(g)$, then one has:
(i) $\pi: G \ltimes \mathcal{V}_{\mathbb{R}}^{*} \rightarrow \mathcal{B}\left(L^{2}(\mathcal{V}, \mu)\right),(\pi(g, \xi) \varphi)(v):=\mathrm{e}^{\mathrm{i} \xi(v)} \varphi\left(\tau\left(g^{-1}\right) v\right)$ is a continuous unitary irreducible representation.

Connected Lie groups whose C^{*}-algebras are primitive

Theorem

Let $\tau: G \rightarrow \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_{0} \in \mathcal{V}$ and $G\left(v_{0}\right):=\left\{g \in G \mid \tau(g) v_{0}=v_{0}\right\}$. If $G / G\left(v_{0}\right)$ has a G-invariant Radon measure and μ is its pushforward through the map $G / G\left(v_{0}\right) \rightarrow \mathcal{V}, g G\left(v_{0}\right) \mapsto \tau(g)$, then one has:
(i) $\pi: G \ltimes \mathcal{V}_{\mathbb{R}}^{*} \rightarrow \mathcal{B}\left(L^{2}(\mathcal{V}, \mu)\right),(\pi(g, \xi) \varphi)(v):=\mathrm{e}^{\mathrm{i} \xi(v)} \varphi\left(\tau\left(g^{-1}\right) v\right)$ is a continuous unitary irreducible representation.
(ii) If $\overline{\tau(G) v_{0}}=\mathcal{V}$ and $G\left(v_{0}\right)=\{\mathbf{1}\}$, then $\overline{\{[\pi]\}}=\widehat{G \ltimes \mathcal{V}_{\mathbb{R}}}$.

Connected Lie groups whose C^{*}-algebras are primitive

Theorem

Let $\tau: G \rightarrow \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_{0} \in \mathcal{V}$ and $G\left(v_{0}\right):=\left\{g \in G \mid \tau(g) v_{0}=v_{0}\right\}$. If $G / G\left(v_{0}\right)$ has a G-invariant Radon measure and μ is its pushforward through the map $G / G\left(v_{0}\right) \rightarrow \mathcal{V}, g G\left(v_{0}\right) \mapsto \tau(g)$, then one has:
(i) $\pi: G \ltimes \mathcal{V}_{\mathbb{R}}^{*} \rightarrow \mathcal{B}\left(L^{2}(\mathcal{V}, \mu)\right),(\pi(g, \xi) \varphi)(v):=\mathrm{e}^{\mathrm{i} \xi(v)} \varphi\left(\tau\left(g^{-1}\right) v\right)$ is a continuous unitary irreducible representation.
(ii) If $\overline{\tau(G) v_{0}}=\mathcal{V}$ and $G\left(v_{0}\right)=\{\mathbf{1}\}$, then $\overline{\{[\pi]\}}=\widehat{G \ltimes \mathcal{V}_{\mathbb{R}}}$.

Ex.: Let $\mathfrak{s}=\mathfrak{n}^{-} \dot{+} \mathfrak{h} \dot{+} \mathfrak{n}^{+}$for a complex simple Lie alg. w.r.t. the Cartan subalgebra \mathfrak{h}. Define the Borel subalgebra $\mathfrak{g}:=\mathfrak{h} \ltimes \mathfrak{n}^{+}$.

Connected Lie groups whose C^{*}-algebras are primitive

Theorem

Let $\tau: G \rightarrow \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_{0} \in \mathcal{V}$ and $G\left(v_{0}\right):=\left\{g \in G \mid \tau(g) v_{0}=v_{0}\right\}$. If $G / G\left(v_{0}\right)$ has a G-invariant Radon measure and μ is its pushforward through the map $G / G\left(v_{0}\right) \rightarrow \mathcal{V}, g G\left(v_{0}\right) \mapsto \tau(g)$, then one has:
(i) $\pi: G \ltimes \mathcal{V}_{\mathbb{R}}^{*} \rightarrow \mathcal{B}\left(L^{2}(\mathcal{V}, \mu)\right),(\pi(g, \xi) \varphi)(v):=\mathrm{e}^{\mathrm{i} \xi(v)} \varphi\left(\tau\left(g^{-1}\right) v\right)$ is a continuous unitary irreducible representation.
(ii) If $\overline{\tau(G) v_{0}}=\mathcal{V}$ and $G\left(v_{0}\right)=\{\mathbf{1}\}$, then $\overline{\{[\pi]\}}=\widehat{G \ltimes \mathcal{V}_{\mathbb{R}}^{*}}$.

Ex.: Let $\mathfrak{s}=\mathfrak{n}^{-} \dot{+} \mathfrak{h} \dot{+} \mathfrak{n}^{+}$for a complex simple Lie alg. w.r.t. the Cartan subalgebra \mathfrak{h}. Define the Borel subalgebra $\mathfrak{g}:=\mathfrak{h} \ltimes \mathfrak{n}^{+}$.
Fact: G has a nonempty open coadjoint orbit
$\Longleftrightarrow \mathfrak{s} \in\left\{\mathrm{so}(2 \ell+1, \mathbb{C}), \mathfrak{s p}(2 \ell, \mathbb{C}), \mathrm{so}(2 \ell, \mathbb{C})\right.$ with $\left.\ell \in 2 \mathbb{N}, E_{7}, E_{8}, F_{4}, G_{2}\right\}$
For such G, the above theorem applies with $\tau=\operatorname{Ad}_{G}^{*}$.

Connected Lie groups whose C^{*}-algebras are primitive

Theorem

Let $\tau: G \rightarrow \operatorname{End}(\mathcal{V})$ be a finite-dim. representation of a locally compact amenable group. Let $v_{0} \in \mathcal{V}$ and $G\left(v_{0}\right):=\left\{g \in G \mid \tau(g) v_{0}=v_{0}\right\}$. If $G / G\left(v_{0}\right)$ has a G-invariant Radon measure and μ is its pushforward through the map $G / G\left(v_{0}\right) \rightarrow \mathcal{V}, g G\left(v_{0}\right) \mapsto \tau(g)$, then one has:
(i) $\pi: G \ltimes \mathcal{V}_{\mathbb{R}}^{*} \rightarrow \mathcal{B}\left(L^{2}(\mathcal{V}, \mu)\right),(\pi(g, \xi) \varphi)(v):=\mathrm{e}^{\mathrm{i} \xi(v)} \varphi\left(\tau\left(g^{-1}\right) v\right)$ is a continuous unitary irreducible representation.
(ii) If $\overline{\tau(G) v_{0}}=\mathcal{V}$ and $G\left(v_{0}\right)=\{\mathbf{1}\}$, then $\overline{\{[\pi]\}}=\widehat{G \ltimes \mathcal{V}_{\mathbb{R}}^{*}}$.

Ex.: Let $\mathfrak{s}=\mathfrak{n}^{-} \dot{+} \mathfrak{h} \dot{+} \mathfrak{n}^{+}$for a complex simple Lie alg. w.r.t. the Cartan subalgebra \mathfrak{h}. Define the Borel subalgebra $\mathfrak{g}:=\mathfrak{h} \ltimes \mathfrak{n}^{+}$.
Fact: G has a nonempty open coadjoint orbit
$\Longleftrightarrow \mathfrak{s} \in\left\{\mathrm{so}(2 \ell+1, \mathbb{C}), \mathfrak{s p}(2 \ell, \mathbb{C})\right.$, so $(2 \ell, \mathbb{C})$ with $\left.\ell \in 2 \mathbb{N}, E_{7}, E_{8}, F_{4}, G_{2}\right\}$
For such G, the above theorem applies with $\tau=\operatorname{Ad}_{G}^{*}$. The simplest $G \ltimes \mathcal{V}_{\mathbb{R}}^{*}$ is 8-dimensional and is simply connected, solvable, of type I.

Approaching the unitary dual \widehat{G} via groupoids

G exponential Lie group, hence simply connected, solvable, and amenable

Approaching the unitary dual \widehat{G} via groupoids

G exponential Lie group, hence simply connected, solvable, and amenable

- $\operatorname{Ad}_{G}^{*}: G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*},(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g) \xi:=\xi \circ \operatorname{Ad}_{G}\left(g^{-1}\right)$

Recall: homeomorphisms $\widehat{C^{*}(G)} \simeq \widehat{G} \simeq \mathfrak{g}^{*} / \mathrm{Ad}_{G}^{*}$
$\widehat{C^{*}(G)}$ Hausdorff $\Longleftrightarrow G=(\mathfrak{g},+)$ i.e., G is commutative

Approaching the unitary dual \widehat{G} via groupoids

G exponential Lie group, hence simply connected, solvable, and amenable

- $\operatorname{Ad}_{G}^{*}: G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*},(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g) \xi:=\xi \circ \operatorname{Ad}_{G}\left(g^{-1}\right)$

Recall: homeomorphisms $\widehat{C^{*}(G)} \simeq \widehat{G} \simeq \mathfrak{g}^{*} / \mathrm{Ad}_{G}^{*}$
$\widehat{C^{*}(G)}$ Hausdorff $\Longleftrightarrow G=(\mathfrak{g},+)$ i.e., G is commutative

- $0 \rightarrow \mathfrak{g} \rightarrow G \ltimes \mathfrak{g} \rightarrow G \rightarrow \mathbf{1}$ exact sequence of Lie groups
$\leadsto 0 \rightarrow \mathcal{J} \rightarrow C^{*}(G \ltimes \mathfrak{g}) \rightarrow C^{*}(G) \rightarrow 0$

Approaching the unitary dual \widehat{G} via groupoids

G exponential Lie group, hence simply connected, solvable, and amenable

- $\operatorname{Ad}_{G}^{*}: G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*},(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g) \xi:=\xi \circ \operatorname{Ad}_{G}\left(g^{-1}\right)$

Recall: homeomorphisms $\widehat{C^{*}(G)} \simeq \widehat{G} \simeq \mathfrak{g}^{*} / \mathrm{Ad}_{G}^{*}$
$\widehat{C^{*}(G)}$ Hausdorff $\Longleftrightarrow G=(\mathfrak{g},+)$ i.e., G is commutative

- $0 \rightarrow \mathfrak{g} \rightarrow G \ltimes \mathfrak{g} \rightarrow G \rightarrow \mathbf{1}$ exact sequence of Lie groups
$\leadsto 0 \rightarrow \mathcal{J} \rightarrow C^{*}(G \ltimes \mathfrak{g}) \rightarrow C^{*}(G) \rightarrow 0$
- $C^{*}(G \ltimes \mathfrak{g}) \simeq G \ltimes C^{*}(\mathfrak{g},+) \simeq G \ltimes \mathcal{C}_{0}\left(\mathfrak{g}^{*}\right)$
transformation group C^{*}-algebra of $\left(G, \mathfrak{g}^{*}, \operatorname{Ad}_{G}^{*}\right)$

Approaching the unitary dual \widehat{G} via groupoids

G exponential Lie group, hence simply connected, solvable, and amenable

- $\operatorname{Ad}_{G}^{*}: G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*},(g, \xi) \mapsto \operatorname{Ad}_{G}^{*}(g) \xi:=\xi \circ \operatorname{Ad}_{G}\left(g^{-1}\right)$

Recall: homeomorphisms $\widehat{C^{*}(G)} \simeq \widehat{G} \simeq \mathfrak{g}^{*} / \mathrm{Ad}_{G}^{*}$
$\widehat{C^{*}(G)}$ Hausdorff $\Longleftrightarrow G=(\mathfrak{g},+)$ i.e., G is commutative

- $0 \rightarrow \mathfrak{g} \rightarrow G \ltimes \mathfrak{g} \rightarrow G \rightarrow \mathbf{1}$ exact sequence of Lie groups
$\leadsto 0 \rightarrow \mathcal{J} \rightarrow C^{*}(G \ltimes \mathfrak{g}) \rightarrow C^{*}(G) \rightarrow 0$
- $C^{*}(G \ltimes \mathfrak{g}) \simeq G \ltimes C^{*}(\mathfrak{g},+) \simeq G \ltimes \mathcal{C}_{0}\left(\mathfrak{g}^{*}\right)$ transformation group C^{*}-algebra of $\left(G, \mathfrak{g}^{*}, \operatorname{Ad}_{G}^{*}\right)$

Transformation groups are special cases of groupoids.

Groupoids as pullbacks of group bundles

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \sim$ its \mathcal{G}-orbit is $\mathcal{G} . x:=\{r(g) \mid g \in \mathcal{G}, d(g)=x\}$ and isotropy group $\mathcal{G}(x):=\{g \in \mathcal{G} \mid d(g)=r(g)=x\}$

Groupoids as pullbacks of group bundles

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \sim$ its \mathcal{G}-orbit is $\mathcal{G} . x:=\{r(g) \mid g \in \mathcal{G}, d(g)=x\}$ and isotropy group $\mathcal{G}(x):=\{g \in \mathcal{G} \mid d(g)=r(g)=x\}$

Example: group action $\mathcal{G}:=G \times X \rightarrow X, d(g, x)=x, r(g, x)=g \cdot x$

Groupoids as pullbacks of group bundles

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \sim$ its \mathcal{G}-orbit is $\mathcal{G} . x:=\{r(g) \mid g \in \mathcal{G}, d(g)=x\}$ and isotropy group $\mathcal{G}(x):=\{g \in \mathcal{G} \mid d(g)=r(g)=x\}$

Example: group action $\mathcal{G}:=G \times X \rightarrow X, d(g, x)=x, r(g, x)=g \cdot x$

- the quotient map $q: \mathcal{G}^{(0)} \rightarrow \mathcal{G} \backslash \mathcal{G}^{(0)}, x \mapsto \mathcal{G} . x$
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G}-orbit at exactly one point

Groupoids as pullbacks of group bundles

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \sim$ its \mathcal{G}-orbit is $\mathcal{G} . x:=\{r(g) \mid g \in \mathcal{G}, d(g)=x\}$ and isotropy group $\mathcal{G}(x):=\{g \in \mathcal{G} \mid d(g)=r(g)=x\}$

Example: group action $\mathcal{G}:=G \times X \rightarrow X, d(g, x)=x, r(g, x)=g \cdot x$

- the quotient map $q: \mathcal{G}^{(0)} \rightarrow \mathcal{G} \backslash \mathcal{G}^{(0)}, x \mapsto \mathcal{G} . x$
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G}-orbit at exactly one point
- bundle of isotropy groups $\Pi: \Gamma=\bigsqcup_{x \in \Sigma} \mathcal{G}(x) \rightarrow \Sigma$,

Groupoids as pullbacks of group bundles

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \sim$ its \mathcal{G}-orbit is $\mathcal{G} . x:=\{r(g) \mid g \in \mathcal{G}, d(g)=x\}$ and isotropy group $\mathcal{G}(x):=\{g \in \mathcal{G} \mid d(g)=r(g)=x\}$

Example: group action $\mathcal{G}:=G \times X \rightarrow X, d(g, x)=x, r(g, x)=g \cdot x$

- the quotient map $q: \mathcal{G}^{(0)} \rightarrow \mathcal{G} \backslash \mathcal{G}^{(0)}, x \mapsto \mathcal{G} . x$
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G}-orbit at exactly one point
- bundle of isotropy groups $\Pi: \Gamma=\bigsqcup_{x \in \Sigma} \mathcal{G}(x) \rightarrow \Sigma$,
- define $\theta:=\left(\left.q\right|_{\Sigma}\right)^{-1} \circ q: \mathcal{G}^{(0)} \rightarrow \Sigma$ and the pullback of Π by θ

$$
\theta^{\Downarrow \downarrow}(\Pi):=\left\{(x, h, y) \in \mathcal{G}^{(0)} \times \Gamma \times \mathcal{G}^{(0)} \mid \theta(x)=\Pi(h)=\theta(y)\right\} \rightrightarrows \mathcal{G}^{(0)}
$$

with projections on the 1st/3rd coordinates as domain/range maps

Groupoids as pullbacks of group bundles

- $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)} \hookrightarrow \mathcal{G}$ groupoid, with its domain/range maps $d, r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$
- $x \in \mathcal{G}^{(0)} \sim$ its \mathcal{G}-orbit is $\mathcal{G} . x:=\{r(g) \mid g \in \mathcal{G}, d(g)=x\}$ and isotropy group $\mathcal{G}(x):=\{g \in \mathcal{G} \mid d(g)=r(g)=x\}$

Example: group action $\mathcal{G}:=G \times X \rightarrow X, d(g, x)=x, r(g, x)=g \cdot x$

- the quotient map $q: \mathcal{G}^{(0)} \rightarrow \mathcal{G} \backslash \mathcal{G}^{(0)}, x \mapsto \mathcal{G} . x$
- select $\Sigma \subseteq \mathcal{G}^{(0)}$ that intersects every \mathcal{G}-orbit at exactly one point
- bundle of isotropy groups $\Pi: \Gamma=\bigsqcup_{x \in \Sigma} \mathcal{G}(x) \rightarrow \Sigma$,
- define $\theta:=\left(\left.q\right|_{\Sigma}\right)^{-1} \circ q: \mathcal{G}^{(0)} \rightarrow \Sigma$ and the pullback of Π by θ

$$
\theta^{\Downarrow \downarrow}(\Pi):=\left\{(x, h, y) \in \mathcal{G}^{(0)} \times \Gamma \times \mathcal{G}^{(0)} \mid \theta(x)=\Pi(h)=\theta(y)\right\} \rightrightarrows \mathcal{G}^{(0)}
$$

with projections on the 1st/3rd coordinates as domain/range maps

- Any map $\sigma: \mathcal{G}^{(0)} \rightarrow \mathcal{G}$ with $d \circ \sigma=\mathrm{id}$ defines a groupoid isomorphism

$$
\Phi: \mathcal{G} \rightarrow \theta^{\downarrow \downarrow}(\Pi), \quad \Phi(g):=\left(r(g), \sigma(r(g)) g \sigma(d(g))^{-1}, d(g)\right)
$$

Groupoid C^{*}-algebras

- a left Haar system of measures $\lambda=\left\{\lambda^{x} \text { on } r^{-1}(x)\right\}_{x \in \mathcal{G}^{(0)}}$, satisfying
- continuity condition: $\mathcal{G}^{(0)} \ni x \mapsto \lambda(\varphi):=\int \varphi \mathrm{d} \lambda^{x} \in \mathbb{C}$ is cont.
- invariance condition: $\int \varphi(g h) \mathrm{d} \lambda^{d(g)}(h)=\int \varphi(h) \mathrm{d} \lambda^{r(g)}(h)$ for all $g \in \mathcal{G}$ and $\varphi \in \mathcal{C}_{c}(\mathcal{G})$.

Groupoid C^{*}-algebras

- a left Haar system of measures $\lambda=\left\{\lambda^{x} \text { on } r^{-1}(x)\right\}_{x \in \mathcal{G}^{(0)}}$, satisfying
- continuity condition: $\mathcal{G}^{(0)} \ni x \mapsto \lambda(\varphi):=\int \varphi \mathrm{d} \lambda^{x} \in \mathbb{C}$ is cont.
- invariance condition: $\int \varphi(g h) \mathrm{d} \lambda^{d(g)}(h)=\int \varphi(h) \mathrm{d} \lambda^{r(g)}(h)$ for all $g \in \mathcal{G}$ and $\varphi \in \mathcal{C}_{c}(\mathcal{G})$.
- $\mathcal{C}_{c}(\mathcal{G})$ is an associative $*$-algebra with convolution

$$
(\varphi * \psi)(g):=\int_{\mathcal{G}^{r(g)}} \varphi(h) \psi\left(h^{-1} g\right) \mathrm{d} \lambda^{r(g)}
$$

and involution $\varphi^{*}(g):=\overline{\varphi\left(g^{-1}\right)}$ for $g \in \mathcal{G}$ and $\varphi, \psi \in \mathcal{C}_{c}(\mathcal{G})$.

Groupoid C^{*}-algebras

- a left Haar system of measures $\lambda=\left\{\lambda^{x} \text { on } r^{-1}(x)\right\}_{x \in \mathcal{G}^{(0)}}$, satisfying
- continuity condition: $\mathcal{G}^{(0)} \ni x \mapsto \lambda(\varphi):=\int \varphi \mathrm{d} \lambda^{x} \in \mathbb{C}$ is cont.
- invariance condition: $\int \varphi(g h) \mathrm{d} \lambda^{d(g)}(h)=\int \varphi(h) \mathrm{d} \lambda^{r(g)}(h)$ for all $g \in \mathcal{G}$ and $\varphi \in \mathcal{C}_{c}(\mathcal{G})$.
- $\mathcal{C}_{c}(\mathcal{G})$ is an associative $*$-algebra with convolution

$$
(\varphi * \psi)(g):=\int_{\mathcal{G}^{r(g)}} \varphi(h) \psi\left(h^{-1} g\right) \mathrm{d} \lambda^{r(g)}
$$

and involution $\varphi^{*}(g):=\overline{\varphi\left(g^{-1}\right)}$ for $g \in \mathcal{G}$ and $\varphi, \psi \in \mathcal{C}_{c}(\mathcal{G})$.

- regular repres. $\Lambda: \mathcal{C}_{c}(\mathcal{G}) \rightarrow \underset{x \in \mathcal{G}^{(0)}}{\bigoplus} \mathcal{B}\left(L^{2}\left(\mathcal{G}, \lambda^{x}\right)\right), \Lambda(\varphi) \psi_{x}:=\varphi * \psi_{x}$

Groupoid C^{*}-algebras

- a left Haar system of measures $\lambda=\left\{\lambda^{x} \text { on } r^{-1}(x)\right\}_{x \in \mathcal{G}^{(0)}}$, satisfying
- continuity condition: $\mathcal{G}^{(0)} \ni x \mapsto \lambda(\varphi):=\int \varphi \mathrm{d} \lambda^{x} \in \mathbb{C}$ is cont.
- invariance condition: $\int \varphi(g h) \mathrm{d} \lambda^{d(g)}(h)=\int \varphi(h) \mathrm{d} \lambda^{r(g)}(h)$ for all $g \in \mathcal{G}$ and $\varphi \in \mathcal{C}_{c}(\mathcal{G})$.
- $\mathcal{C}_{c}(\mathcal{G})$ is an associative $*$-algebra with convolution

$$
(\varphi * \psi)(g):=\int_{\mathcal{G}^{r}(g)} \varphi(h) \psi\left(h^{-1} g\right) \mathrm{d} \lambda^{r(g)}
$$

and involution $\varphi^{*}(g):=\overline{\varphi\left(g^{-1}\right)}$ for $g \in \mathcal{G}$ and $\varphi, \psi \in \mathcal{C}_{c}(\mathcal{G})$.

- regular repres. $\Lambda: \mathcal{C}_{c}(\mathcal{G}) \rightarrow \underset{x \in \mathcal{G}^{(0)}}{ } \mathcal{B}\left(L^{2}\left(\mathcal{G}, \lambda^{x}\right)\right), \Lambda(\varphi) \psi_{x}:=\varphi * \psi_{x}$
- $C^{*}(G):=\overline{\Lambda(\mathcal{C}(G))^{\|}}{ }^{\|\cdot\|}$

As in the case of groups, this is actually the reduced C^{*}-algebra of G.

Morita equivalence of groupoid C^{*}-algebras

- $\theta: X \rightarrow Y$ has local cross-sections if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \rightarrow X$ continuous with $\tau(y)=x$ and $\theta \circ \tau=\mathrm{id}_{V}$

Morita equivalence of groupoid C^{*}-algebras

- $\theta: X \rightarrow Y$ has local cross-sections if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \rightarrow X$ continuous with $\tau(y)=x$ and $\theta \circ \tau=\mathrm{id}_{V}$

Theorem
Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections.

Morita equivalence of groupoid C^{*}-algebras

- $\theta: X \rightarrow Y$ has local cross-sections if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \rightarrow X$ continuous with $\tau(y)=x$ and $\theta \circ \tau=\mathrm{id}_{V}$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections. If N is a 2nd countable, locally compact space, and $\theta: N \rightarrow \mathcal{G}^{(0)}$ is continuous with local cross-sections,

- $\theta^{\downarrow \downarrow}(\mathcal{G}) \rightrightarrows N$ is a locally compact groupoid with a left Haar system

Morita equivalence of groupoid C^{*}-algebras

- $\theta: X \rightarrow Y$ has local cross-sections if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \rightarrow X$ continuous with $\tau(y)=x$ and $\theta \circ \tau=\operatorname{id}_{V}$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections. If N is a $2 n d$ countable, locally compact space, and $\theta: N \rightarrow \mathcal{G}^{(0)}$ is continuous with local cross-sections,

- $\theta^{\downarrow \downarrow}(\mathcal{G}) \rightrightarrows N$ is a locally compact groupoid with a left Haar system
- the C^{*}-algebras $C^{*}(\mathcal{G})$ and $C^{*}\left(\theta^{\downarrow}(\mathcal{G})\right)$ are Morita equivalent
- Recall: for separable C^{*}-algebras,
\mathcal{A}_{1} and \mathcal{A}_{2} are Morita equivalent $\Longleftrightarrow \mathcal{A}_{1} \otimes \mathcal{K}(\mathcal{H}) \simeq \mathcal{A}_{2} \otimes \mathcal{K}(\mathcal{H})$

Morita equivalence of groupoid C^{*}-algebras

- $\theta: X \rightarrow Y$ has local cross-sections if for all $y \in Y$ and $x \in \theta^{-1}(y)$ there exist an open neighborhood V of y and $\tau: V \rightarrow X$ continuous with $\tau(y)=x$ and $\theta \circ \tau=\operatorname{id}_{V}$

Theorem

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid with a left Haar system, with $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$ having local cross-sections. If N is a $2 n d$ countable, locally compact space, and $\theta: N \rightarrow \mathcal{G}^{(0)}$ is continuous with local cross-sections,

- $\theta^{\downarrow \downarrow}(\mathcal{G}) \rightrightarrows N$ is a locally compact groupoid with a left Haar system
- the C^{*}-algebras $C^{*}(\mathcal{G})$ and $C^{*}\left(\theta^{\downarrow \downarrow}(\mathcal{G})\right)$ are Morita equivalent
- Recall: for separable C^{*}-algebras,
\mathcal{A}_{1} and \mathcal{A}_{2} are Morita equivalent $\Longleftrightarrow \mathcal{A}_{1} \otimes \mathcal{K}(\mathcal{H}) \simeq \mathcal{A}_{2} \otimes \mathcal{K}(\mathcal{H})$
\Longrightarrow isomorphic lattices of ideals, representation theories etc.

Application to coadjoint dynamical systems

Application to coadjoint dynamical systems

Theorem
The coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles.

Application to coadjoint dynamical systems

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles.

Def. A locally compact groupoid $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ is a piecewise pullback of group bundles with pieces V_{k} for $k=1, \ldots, n$ if
(1) $V_{k}=U_{k} \backslash U_{k-1}$ for some open \mathcal{G}-invariant subsets

$$
\emptyset=U_{0} \subseteq U_{1} \subseteq \cdots \subseteq U_{n}=\mathcal{G}^{(0)}
$$

(2) $\mathcal{G} V_{k} \simeq \theta_{k}^{\Downarrow \downarrow}\left(\mathcal{T}_{k}\right)$ for an open continuous surjective map $\theta_{k}: V_{k} \rightarrow S_{k}$ having local cross-sections and a group bundle $\mathcal{T}_{k} \rightarrow S_{k}$

Application to coadjoint dynamical systems

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles.

Def. A locally compact groupoid $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ is a piecewise pullback of group bundles with pieces V_{k} for $k=1, \ldots, n$ if
(1) $V_{k}=U_{k} \backslash U_{k-1}$ for some open \mathcal{G}-invariant subsets

$$
\emptyset=U_{0} \subseteq U_{1} \subseteq \cdots \subseteq U_{n}=\mathcal{G}^{(0)}
$$

(2) $\mathcal{G} V_{k} \simeq \theta_{k}^{\Downarrow \downarrow}\left(\mathcal{T}_{k}\right)$ for an open continuous surjective map $\theta_{k}: V_{k} \rightarrow S_{k}$ having local cross-sections and a group bundle $\mathcal{T}_{k} \rightarrow S_{k}$

There are closed 2-sided ideals $\{0\}=\mathcal{J}_{0} \subseteq \mathcal{J}_{1} \subseteq \cdots \subseteq \mathcal{J}_{n}=C^{*}(\mathcal{G})$ such that the $\mathcal{J}_{k} / \mathcal{J}_{k-1}$ is Morita equivalent to the C^{*}-algebra of sections of a continuous C^{*}-bundle whose fibers are C^{*}-algebras of isotropy groups of \mathcal{G}. Every isotropy group occurs for exactly one value of k.

Examples

Example 1 (nilpotent Lie group)
The Heisenberg group $\mathbb{H}_{2 n+1}$ with $\mathfrak{h}_{2 n+1}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$, $(x, y, t) \cdot\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle-\left\langle y, x^{\prime}\right\rangle\right)\right)$

- $0 \rightarrow \mathcal{C}_{0}(\mathbb{R} \backslash\{0\}) \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \rightarrow C^{*}\left(\mathbb{H}_{2 n+1}\right) \rightarrow \mathcal{C}_{0}\left(\mathbb{R}^{2 n}\right) \rightarrow 0$

Examples

Example 1 (nilpotent Lie group)
The Heisenberg group $\mathbb{H}_{2 n+1}$ with $\mathfrak{h}_{2 n+1}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$, $(x, y, t) \cdot\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle-\left\langle y, x^{\prime}\right\rangle\right)\right)$

- $0 \rightarrow \mathcal{C}_{0}(\mathbb{R} \backslash\{0\}) \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \rightarrow C^{*}\left(\mathbb{H}_{2 n+1}\right) \rightarrow \mathcal{C}_{0}\left(\mathbb{R}^{2 n}\right) \rightarrow 0$
- space of coadjoint orbits: $(\mathbb{R} \backslash\{0\}) \sqcup \mathbb{R}^{2 n} \simeq \widehat{\mathbb{H}}_{2 n+1}$

Examples

Example 1 (nilpotent Lie group)
The Heisenberg group $\mathbb{H}_{2 n+1}$ with $\mathfrak{h}_{2 n+1}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$, $(x, y, t) \cdot\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle-\left\langle y, x^{\prime}\right\rangle\right)\right)$

- $0 \rightarrow \mathcal{C}_{0}(\mathbb{R} \backslash\{0\}) \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \rightarrow C^{*}\left(\mathbb{H}_{2 n+1}\right) \rightarrow \mathcal{C}_{0}\left(\mathbb{R}^{2 n}\right) \rightarrow 0$
- space of coadjoint orbits: $(\mathbb{R} \backslash\{0\}) \sqcup \mathbb{R}^{2 n} \simeq \widehat{\mathbb{H}}_{2 n+1}$

Example 2 (solvable Lie group)
The $a x+b$ group with $a=e^{t}>0: \mathfrak{g}=\mathbb{R} \times \mathbb{R}$, $(t, b) \cdot(s, c)=\left(t+s, e^{t} c+b\right)$

Examples

Example 1 (nilpotent Lie group)
The Heisenberg group $\mathbb{H}_{2 n+1}$ with $\mathfrak{h}_{2 n+1}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$, $(x, y, t) \cdot\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle-\left\langle y, x^{\prime}\right\rangle\right)\right)$

- $0 \rightarrow \mathcal{C}_{0}(\mathbb{R} \backslash\{0\}) \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \rightarrow C^{*}\left(\mathbb{H}_{2 n+1}\right) \rightarrow \mathcal{C}_{0}\left(\mathbb{R}^{2 n}\right) \rightarrow 0$
- space of coadjoint orbits: $(\mathbb{R} \backslash\{0\}) \sqcup \mathbb{R}^{2 n} \simeq \widehat{\mathbb{H}}_{2 n+1}$

Example 2 (solvable Lie group)
The $a x+b$ group with $a=e^{t}>0: \mathfrak{g}=\mathbb{R} \times \mathbb{R}$, $(t, b) \cdot(s, c)=\left(t+s, e^{t} c+b\right)$

- $0 \rightarrow \mathbb{C}^{2} \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{2}\right)\right) \rightarrow C^{*}(G) \rightarrow \mathcal{C}_{0}(\mathbb{R}) \rightarrow 0$

Examples

Example 1 (nilpotent Lie group)
The Heisenberg group $\mathbb{H}_{2 n+1}$ with $\mathfrak{h}_{2 n+1}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$, $(x, y, t) \cdot\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle-\left\langle y, x^{\prime}\right\rangle\right)\right)$

- $0 \rightarrow \mathcal{C}_{0}(\mathbb{R} \backslash\{0\}) \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \rightarrow C^{*}\left(\mathbb{H}_{2 n+1}\right) \rightarrow \mathcal{C}_{0}\left(\mathbb{R}^{2 n}\right) \rightarrow 0$
- space of coadjoint orbits: $(\mathbb{R} \backslash\{0\}) \sqcup \mathbb{R}^{2 n} \simeq \widehat{\mathbb{H}}_{2 n+1}$

Example 2 (solvable Lie group)
The $a x+b$ group with $a=e^{t}>0: \mathfrak{g}=\mathbb{R} \times \mathbb{R}$, $(t, b) \cdot(s, c)=\left(t+s, e^{t} c+b\right)$

- $0 \rightarrow \mathbb{C}^{2} \otimes \mathcal{K}\left(L^{2}\left(\mathbb{R}^{2}\right)\right) \rightarrow C^{*}(G) \rightarrow \mathcal{C}_{0}(\mathbb{R}) \rightarrow 0$
- space of coadjoint orbits: $\{2$ open points $\} \sqcup \mathbb{R} \simeq \widehat{G}$

Groupoids with dense open orbits

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid, having a Haar system.
Proposition 1
Assume the orbits of $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ are locally closed. Then

$$
C^{*}(\mathcal{G}) \simeq \mathcal{K}(\mathcal{H}) \Longleftrightarrow \mathcal{G} \text { is a pair groupoid. }
$$

Groupoids with dense open orbits

Let $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ be a locally compact groupoid, having a Haar system.

Proposition 1

Assume the orbits of $\mathcal{G} \rightrightarrows \mathcal{G}^{(0)}$ are locally closed. Then

$$
C^{*}(\mathcal{G}) \simeq \mathcal{K}(\mathcal{H}) \Longleftrightarrow \mathcal{G} \text { is a pair groupoid. }
$$

Proposition 2

If $U \subseteq \mathcal{G}^{(0)}$ is any open \mathcal{G}-invariant set and $x_{0} \in U$, then one has:
(i) For every $x \in \mathcal{G}^{(0)} \backslash U$ the ideal $C^{*}\left(\mathcal{G}_{U}\right)$ of $C^{*}(\mathcal{G})$ is contained in the kernel of the regular representation $\Lambda_{x}: C^{*}(\mathcal{G}) \rightarrow \mathcal{L}\left(L^{2}\left(\mathcal{G}^{\times}\right)\right)$.
(ii) If U is an orbit of \mathcal{G}, then

$$
\operatorname{Ker} \Lambda_{x_{0}}=\{0\} \Longleftrightarrow \bar{U}=\mathcal{G}^{(0)}
$$

