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Overview

Ĝ 3 [π] ; π : C ∗(G )→ B(Hπ)

• G type I =⇒ K(Hπ) ⊆ π(C ∗(G )) ' C ∗(G )/Kerπ

New facts:

I G nilpotent Lie group, π : G → B(X ) irred., unif. bdd.,

X reflexive Banach sp. =⇒ K(X ) = π(Cc(G ))
‖·‖

(well known if X is a Hibert space)

I if G exponential solvable Lie group, then:

I (∀[π] ∈ Ĝ ) Kerπ 6= {0} in C∗(G )
I if G not nilpotent, then (∃[π] ∈ Ĝ ) K(Hπ) $ π(C∗(G ))

; 0→ K(Hπ)→ π(C∗(G ))→ π(C∗(G ))/K(Hπ)→ 0

I groupoids ; many examples of solvable Lie groups G
(besides Co C∗) for which

(∃[π] ∈ Ĝ ) Kerπ = {0} in C ∗(G )
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Group C ∗-algebras

• G locally compact group (e.g., Lie group)
• There is a Haar measure λ on G , invariant under left translations:∫

G ϕ(a · x)dλ(x) =
∫
G ϕ(x)dλ(x) for a ∈ G and ϕ ∈ Cc(G )

• regular representation λ : Cc(G )→ B(L2(G )), λ(f )ϕ = f ∗ ϕ,
where (f ∗ ϕ)(x) =

∫
G f (a)ϕ(a−1 · x)dλ(a)

• C ∗(G ) := λ(Cc(G ))
‖·‖ ⊆ B(L2(G ))

This is actually the reduced C∗-algebra of G .

• Ĝ = equivalence classes [π] of unitary irreducible repres. π : G → U(Hπ)

• Â = equivalence classes of irreducible ∗-repres. of C ∗-alg. A

• amenable group means: canonical inclusion Ĉ ∗(G ) ↪→ Ĝ is bijective
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Daniel Beltiţă (IMAR) Group C∗-algebras 30.09.2016 4 / 14



Group C ∗-algebras

• G locally compact group (e.g., Lie group)
• There is a Haar measure λ on G , invariant under left translations:∫

G ϕ(a · x)dλ(x) =
∫
G ϕ(x)dλ(x) for a ∈ G and ϕ ∈ Cc(G )

• regular representation λ : Cc(G )→ B(L2(G )), λ(f )ϕ = f ∗ ϕ,
where (f ∗ ϕ)(x) =

∫
G f (a)ϕ(a−1 · x)dλ(a)

• C ∗(G ) := λ(Cc(G ))
‖·‖ ⊆ B(L2(G ))

This is actually the reduced C∗-algebra of G .
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Spectral topology

Recall: exponential Lie group =⇒ simply connected solvable Lie group

=⇒ amenable group =⇒ Ĝ ' Ĉ ∗(G )

Question

What topology can Ĝ have if G is a simply connected solvable Lie group?

Def. C ∗-algebra A
; spectrum Â := {[π] | π : A → B(Hπ) irred. ∗-repres.}
; topology with open sets {[π] ∈ Â | π|J 6≡ 0} for closed 2-sided ideals
J ⊆ A

• A commutative =⇒ Â Hausdorff

• {[π0]} dense in Â ⇐⇒ Kerπ0 = {0}

Def. A is primitive if it has faithful irreducible representations
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When is C ∗(G ) primitive?

Old fact: G nilpotent Lie group
=⇒ π(C ∗(G )) = K(Hπ) for all [π] ∈ Ĝ
=⇒ C ∗(G ) is not primitive

G exponential solvable Lie group =⇒ C ∗(G ) is not primitive

Proof. Let [π] ∈ Ĝ with its coadjoint orbit Oπ ⊆ g∗.
• Oπ is relatively open in its closure.
• {[π]} dense in Ĝ ' g∗/Ad∗G
=⇒ Oπ dense in g∗

=⇒ Oπ open dense orbit
=⇒ Oπ is the unique open orbit
• New fact: G has an even number of open coadjoint orbits
(e.g., the ax + b group has 2 open orbits, nilpotent groups have none)

Q.E.D.
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Connected Lie groups whose C ∗-algebras are primitive

Theorem

Let τ : G → End (V) be a finite-dim. representation of a locally compact
amenable group. Let v0 ∈ V and G (v0) := {g ∈ G | τ(g)v0 = v0}.

If
G/G (v0) has a G -invariant Radon measure and µ is its pushforward
through the map G/G (v0)→ V, gG (v0) 7→ τ(g), then one has:

(i) π : G n V∗R → B(L2(V, µ)), (π(g , ξ)ϕ)(v) := eiξ(v)ϕ(τ(g−1)v) is a
continuous unitary irreducible representation.

(ii) If τ(G )v0 = V and G (v0) = {1}, then {[π]} = Ĝ n V∗R.

Ex.: Let s = n− u hu n+ for a complex simple Lie alg. w.r.t. the Cartan
subalgebra h. Define the Borel subalgebra g := hn n+.
Fact: G has a nonempty open coadjoint orbit
⇐⇒ s ∈ {so(2`+ 1,C), sp(2`,C), so(2`,C) with ` ∈ 2N,E7,E8,F4,G2}

For such G , the above theorem applies with τ = Ad∗G . The simplest
G n V∗R is 8-dimensional and is simply connected, solvable, of type I.
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Ex.: Let s = n− u hu n+ for a complex simple Lie alg. w.r.t. the Cartan
subalgebra h. Define the Borel subalgebra g := hn n+.
Fact: G has a nonempty open coadjoint orbit
⇐⇒ s ∈ {so(2`+ 1,C), sp(2`,C), so(2`,C) with ` ∈ 2N,E7,E8,F4,G2}

For such G , the above theorem applies with τ = Ad∗G .

The simplest
G n V∗R is 8-dimensional and is simply connected, solvable, of type I.
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Approaching the unitary dual Ĝ via groupoids

G exponential Lie group, hence simply connected, solvable, and amenable

• Ad∗G : G × g∗ → g∗, (g , ξ) 7→ Ad∗G (g)ξ := ξ ◦AdG (g−1)

Recall: homeomorphisms Ĉ∗(G) ' Ĝ ' g∗/Ad∗G

Ĉ∗(G) Hausdorff ⇐⇒ G = (g,+) i.e., G is commutative

• 0→ g→ G n g→ G → 1 exact sequence of Lie groups

; 0→ J → C ∗(G n g)→ C ∗(G )→ 0

• C ∗(G n g) ' G n C ∗(g,+) ' G n C0(g∗)
transformation group C ∗-algebra of (G , g∗,Ad∗G )

Transformation groups are special cases of groupoids.
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Groupoids as pullbacks of group bundles

• G ⇒ G(0) ↪→ G groupoid, with its domain/range maps d , r : G → G(0)

• x ∈ G(0) ; its G-orbit is G.x := {r(g) | g ∈ G, d(g) = x}
and isotropy group G(x) := {g ∈ G | d(g) = r(g) = x}

Example: group action G := G × X → X , d(g , x) = x , r(g , x) = g .x

• the quotient map q : G(0) → G \ G(0), x 7→ G.x
• select Σ ⊆ G(0) that intersects every G-orbit at exactly one point
• bundle of isotropy groups Π: Γ =

⊔
x∈Σ

G(x)→ Σ,

• define θ := (q|Σ)−1 ◦ q : G(0) → Σ and the pullback of Π by θ

θ
↓↓

(Π) := {(x , h, y) ∈ G(0) × Γ× G(0) | θ(x) = Π(h) = θ(y)}⇒ G(0)

with projections on the 1st/3rd coordinates as domain/range maps
• Any map σ : G(0) → G with d ◦ σ = id defines a groupoid isomorphism

Φ: G → θ
↓↓

(Π), Φ(g) := (r(g), σ(r(g))gσ(d(g))−1, d(g))
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Groupoid C ∗-algebras

• a left Haar system of measures λ = {λx on r−1(x)}x∈G(0) , satisfying

- continuity condition: G(0) 3 x 7→ λ(ϕ) :=
∫
ϕdλx ∈ C is cont.

- invariance condition:
∫
ϕ(gh)dλd(g)(h) =

∫
ϕ(h)dλr(g)(h)

for all g ∈ G and ϕ ∈ Cc(G).

• Cc(G) is an associative ∗-algebra with convolution

(ϕ ∗ ψ)(g) :=

∫
Gr(g)

ϕ(h)ψ(h−1g)dλr(g)

and involution ϕ∗(g) := ϕ(g−1) for g ∈ G and ϕ,ψ ∈ Cc(G).
• regular repres. Λ: Cc(G)→

⊕
x∈G(0)

B(L2(G, λx)), Λ(ϕ)ψx := ϕ ∗ ψx

• C ∗(G ) := Λ(C(G ))
‖·‖

As in the case of groups, this is actually the reduced C∗-algebra of G .
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Morita equivalence of groupoid C ∗-algebras

• θ : X → Y has local cross-sections if for all y ∈ Y and x ∈ θ−1(y) there
exist an open neighborhood V of y and τ : V → X continuous with
τ(y) = x and θ ◦ τ = idV

Theorem

Let G ⇒ G(0) be a locally compact groupoid with a left Haar system, with
d : G → G(0) having local cross-sections. If N is a 2nd countable, locally
compact space, and θ : N → G(0) is continuous with local cross-sections,

I θ
↓↓

(G)⇒ N is a locally compact groupoid with a left Haar system

I the C ∗-algebras C ∗(G) and C ∗(θ
↓↓

(G)) are Morita equivalent

• Recall: for separable C ∗-algebras,
A1 and A2 are Morita equivalent ⇐⇒ A1 ⊗K(H) ' A2 ⊗K(H)
=⇒ isomorphic lattices of ideals, representation theories etc.
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Application to coadjoint dynamical systems

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a
piecewise pullback of group bundles.

Def. A locally compact groupoid G ⇒ G(0) is a piecewise pullback of
group bundles with pieces Vk for k = 1, . . . , n if

1 Vk = Uk \ Uk−1 for some open G-invariant subsets

∅ = U0 ⊆ U1 ⊆ · · · ⊆ Un = G(0)

2 GVk
' θ↓↓k (Tk) for an open continuous surjective map θk : Vk → Sk

having local cross-sections and a group bundle Tk → Sk

There are closed 2-sided ideals {0} = J0 ⊆ J1 ⊆ · · · ⊆ Jn = C ∗(G) such
that the Jk/Jk−1 is Morita equivalent to the C ∗-algebra of sections of a
continuous C ∗-bundle whose fibers are C ∗-algebras of isotropy groups
of G. Every isotropy group occurs for exactly one value of k .
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Daniel Beltiţă (IMAR) Group C∗-algebras 30.09.2016 12 / 14



Application to coadjoint dynamical systems

Theorem

The coadjoint dynamical system of any exponential solvable Lie group is a
piecewise pullback of group bundles.

Def. A locally compact groupoid G ⇒ G(0) is a piecewise pullback of
group bundles with pieces Vk for k = 1, . . . , n if

1 Vk = Uk \ Uk−1 for some open G-invariant subsets

∅ = U0 ⊆ U1 ⊆ · · · ⊆ Un = G(0)

2 GVk
' θ↓↓k (Tk) for an open continuous surjective map θk : Vk → Sk

having local cross-sections and a group bundle Tk → Sk

There are closed 2-sided ideals {0} = J0 ⊆ J1 ⊆ · · · ⊆ Jn = C ∗(G) such
that the Jk/Jk−1 is Morita equivalent to the C ∗-algebra of sections of a
continuous C ∗-bundle whose fibers are C ∗-algebras of isotropy groups
of G. Every isotropy group occurs for exactly one value of k .

Daniel Beltiţă (IMAR) Group C∗-algebras 30.09.2016 12 / 14



Examples

Example 1 (nilpotent Lie group)
The Heisenberg group H2n+1 with h2n+1 = Rn × Rn × R,
(x , y , t) · (x ′, y ′, t ′) = (x + x ′, y + y ′, t + t ′ + 1

2 (〈x , y ′〉 − 〈y , x ′〉))
• 0→ C0(R \ {0})⊗K(L2(Rn))→ C ∗(H2n+1)→ C0(R2n)→ 0

• space of coadjoint orbits: (R \ {0}) t R2n ' Ĥ2n+1

Example 2 (solvable Lie group)
The ax + b group with a = et > 0: g = R× R,
(t, b) · (s, c) = (t + s, etc + b)

• 0→ C2 ⊗K(L2(R2))→ C ∗(G )→ C0(R)→ 0
• space of coadjoint orbits: {2 open points} t R ' Ĝ
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• 0→ C2 ⊗K(L2(R2))→ C ∗(G )→ C0(R)→ 0

• space of coadjoint orbits: {2 open points} t R ' Ĝ
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Groupoids with dense open orbits

Let G ⇒ G(0) be a locally compact groupoid, having a Haar system.

Proposition 1

Assume the orbits of G ⇒ G(0) are locally closed. Then
C ∗(G) ' K(H) ⇐⇒ G is a pair groupoid.

Proposition 2

If U ⊆ G(0) is any open G-invariant set and x0 ∈ U, then one has:

(i) For every x ∈ G(0) \ U the ideal C ∗(GU) of C ∗(G) is contained in the
kernel of the regular representation Λx : C ∗(G)→ L(L2(Gx)).

(ii) If U is an orbit of G, then
KerΛx0 = {0} ⇐⇒ U = G(0)
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