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Lie Groups

Lie groups: double (or even triple) structure:

groups differentiable
spaces (differen-
tial calculus)

manifolds
(atlas)
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Groups, and their cousins

You know what a group is...

A loop is like a group without requiring associativity. A quasigroup
is a like a loop but forgetting possible units.

A groupoid is like a group, but the group law ∗ is not defined
everywhere; or one may say, like a group having many units:

groupoids loops

groups
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Loops and quasigroups

Definition. A quasigroup (Q, ·) is a set Q together with a binary
product · : Q × Q → Q, (a, b) 7→ a · b, such that, for each y ∈ Q,
the left translations x 7→ y · x and the right translations x 7→ x · y
are bijective maps from Q to Q.

A loop is a quasigroup together with a unit element e.

Example 1. A group is a loop whose product is associative.

Example 2. The non-zero octonions form a non-associative loop
with respect to multiplication.

Example 3 (universal): 3-webs. A 3-web looks like this:

α
γ
β
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3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3
equivalence relations α, β, γ that are mutually transversal (i.e.,
every equivalence class of one of the relations is a set of
representatives for the equivalence classes of the other two). Let
A = M/α, B = M/β, C = M/γ the three quotient spaces, Define

the canonical product A× B → C , (u, v) 7→ u · v := [u ∩ v ]γ .

α β
γ

u · v

u

b

v

Theorem (easy: cf. Postmodern Algebra). The product
A× B → C is a dissociated (three-based) quasigroup, i.e., left and
right translations are bijections. And so are the other five
products, called parastrophic with the first one.

Proof. a · x = c iff a ∩ x ∩ c ̸= ∅ iff x = a · c.
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3-webs with base point, and loops

Now: want product A× A → A instead of A× B → C . We fix a
base point o ∈ M and use it to identify A,B and C . There are
several choices involved, so we get several loop structures on A.

For instance, u • v = ((u ∩ [o]β)γ ∩ (v ∩ [o]γ)β)α . One

recognizes the usual “addition of points” on the line [o]γ :

α
γ

β

b
o

u v u • v

Theorem. This defines a loop, and every loop is obtained in this
way! – What about the choices? A nice mathematical structure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

3-webs with base point, and loops

Now: want product A× A → A instead of A× B → C .

We fix a
base point o ∈ M and use it to identify A,B and C . There are
several choices involved, so we get several loop structures on A.

For instance, u • v = ((u ∩ [o]β)γ ∩ (v ∩ [o]γ)β)α . One

recognizes the usual “addition of points” on the line [o]γ :

α
γ

β

b
o

u v u • v

Theorem. This defines a loop, and every loop is obtained in this
way! – What about the choices? A nice mathematical structure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

3-webs with base point, and loops

Now: want product A× A → A instead of A× B → C . We fix a
base point o ∈ M and use it to identify A,B and C . There are
several choices involved, so we get several loop structures on A.

For instance, u • v = ((u ∩ [o]β)γ ∩ (v ∩ [o]γ)β)α . One

recognizes the usual “addition of points” on the line [o]γ :

α
γ

β

b
o

u v u • v

Theorem. This defines a loop, and every loop is obtained in this
way! – What about the choices? A nice mathematical structure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

3-webs with base point, and loops

Now: want product A× A → A instead of A× B → C . We fix a
base point o ∈ M and use it to identify A,B and C . There are
several choices involved, so we get several loop structures on A.

For instance, u • v = ((u ∩ [o]β)γ ∩ (v ∩ [o]γ)β)α . One

recognizes the usual “addition of points” on the line [o]γ :

α
γ

β

b
o

u v u • v

Theorem. This defines a loop, and every loop is obtained in this
way! – What about the choices? A nice mathematical structure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

3-webs with base point, and loops

Now: want product A× A → A instead of A× B → C . We fix a
base point o ∈ M and use it to identify A,B and C . There are
several choices involved, so we get several loop structures on A.

For instance, u • v = ((u ∩ [o]β)γ ∩ (v ∩ [o]γ)β)α . One

recognizes the usual “addition of points” on the line [o]γ :

α
γ

β

b
o

u v u • v

Theorem. This defines a loop, and every loop is obtained in this
way!

– What about the choices? A nice mathematical structure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

3-webs with base point, and loops

Now: want product A× A → A instead of A× B → C . We fix a
base point o ∈ M and use it to identify A,B and C . There are
several choices involved, so we get several loop structures on A.

For instance, u • v = ((u ∩ [o]β)γ ∩ (v ∩ [o]γ)β)α . One

recognizes the usual “addition of points” on the line [o]γ :

α
γ

β

b
o

u v u • v

Theorem. This defines a loop, and every loop is obtained in this
way! – What about the choices? A nice mathematical structure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Groupoids

Definition. A groupoid (G1,G0, α, β, ∗, 1, i) is given by:

a set G0

of units (objects), a set G1 of morphisms, by source and targent
maps α, β : G1 → G0, an associative product ∗ defined on the set
{(a, b) ∈ G1 × G1 | α(a) = β(b)} such that α(a ∗ b) = α(b),
β(a ∗ b) = β(a), a unit section 1 : G0 → G1, x 7→ 1x such that
a ∗ 1α(a) = a, 1β(b) ∗ b = b, and an inversion map i : G → G ,
a 7→ a−1 such that a ∗ a−1 = 1β(a), a

−1 ∗ a = 1α(a).

A groupoid may be visualized like this:

β
α

G1 (morphism set)

G0 (object set)

b f
b g

b
g ∗ f

b h

b
h ∗ g ∗ f

h ∗ g
b

b g
−1
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β(a ∗ b) = β(a), a unit section 1 : G0 → G1, x 7→ 1x such that
a ∗ 1α(a) = a, 1β(b) ∗ b = b, and an inversion map i : G → G ,
a 7→ a−1 such that a ∗ a−1 = 1β(a), a

−1 ∗ a = 1α(a).

A groupoid may be visualized like this:

β
α

G1 (morphism set)

G0 (object set)

b f
b g

b
g ∗ f

b h

b
h ∗ g ∗ f

h ∗ g
b

b g
−1
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Groupoids: examples

Example 1. When α = β: G1 is a group bundle over the base G0.
If, moreover, G0 = {e}, then G1 is a group with unit e.

Example 2. When α⊤β, i.e., fibers of α and β are transversal,
then G is a pair groupoid: G0 = M is an arbitrary set,

G1 = M ×M, α(x , y) = y , β(x , y) = x , 1x = (x , x),

(x , y) ∗ (y , z) = (x , z), (x , y)−1 = (y , x).

Example 3. An equivalence relation ϵ ⊂ (M ×M) defines a
groupoid (G1,G0) = (ϵ,M) (subgroupoid of the pair groupoid).

A general groupoid is a kind of mixture of these examples.

Question: what is the relation between 3-webs and groupoids?
(See later.)
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Differential Calculus

Observation. (Folklore? Fermat, Caratheodory, Hadamard,
[BGN]...)

Let f : Rn ⊃ U → W = Rm be a map. Then f is of
class C 1 if, and only if, its slope map

f [1] : (x , v , t) 7→ f [1](x , v , t) :=
f (x + tv)− f (x)

t

admits a continuous extension to a map defined also for t = 0.
Then df (x)v := f [1](x , v , 0) is the differential of f at x .

Definition. [BGN] A map f defined on an open subset of a
topological module over a good topological ring K (“good”: 0
belongs to the closure of the unit group K×) is called of class C 1

over K if it satisfies the last condition from the observation.

Task. Develop all analytic, algebraic and geometric consequences
of this definition! [BGN], [B, Mem AMS 2008],... [B, 2014, 15]...

Open problems. What can we do if K is discrete (e.g., finite)?
And what about (non) commutativity of K?
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The Chain Rule, and “Conceptual Calculus”

Notation: K good (as above), f : V ⊃ U → W as above.

Definition. Extended domain, extended map:

U{1} := {(x , v , t) | x ∈ U, v ∈ V , t ∈ K : x + tv ∈ U}

f {1} : U{1} → W {1}, (x , v , t) 7→
(
f (x), f [1](x , v , t), t

)
Theorem (The Chain Rule). The symbol {1} is a functor:

(g ◦ f ){1} = g{1} ◦ f {1}

Proof. For t ∈ K×, direct computation; for t = 0 by continuous
extension.

“Conceptual calculus”: study this functor! Its main feature is
related to the fact that the differential should be a linear map:
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Calculus and groupoids

Theorem (extended tangent groupoid). The extended domain
U{1} carries a natural groupoid structure, and f {1} is a morphism
of groupoids. The groupoid structure is given by

(G1,G0) = (U{1},U ×K), α(x , v , t) = (x , t),

β(x , v , t) = (x + tv , t), (y ,w , t) ∗ (x , v , t) = (y ,w + v , t).

For any fixed t, these formulae define again groupoids Ut ; when
t ∈ K×, then Ut is isomorphic to the pair groupoid on U; and U0

is the tangent bundle of U.

Corollary. For a C 1-map f , the differential df (x) : V → W is an
additive map (a group morphism).

Proof. Take t = 0 in the preceding theorem.

Methodological remark. In usual calculus, linearity of the
differential is imposed by definition. In BGN-calculus, it is a
theorem. By Occam’s razor, this is an argument in favor of
BGN-calculus.
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Methodological remark. In usual calculus, linearity of the
differential is imposed by definition. In BGN-calculus, it is a
theorem. By Occam’s razor, this is an argument in favor of
BGN-calculus.
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Manifolds

Thanks to the Chain Rule and the preceding theorem, the
groupoids U{1} can be glued together: to every (Hausdorff)
manifold M is associated a groupoid M{1} over M ×K.

To prove this, one should start with a formal analysis of the
concept of manifold: charts, atlasses, transition functions...

Say that two charts are equivalent if they have the same domain of
definition, and say that one chart is smaller than another if it is a
restriction of the other.

Theorem. Gluing data with this equivalence relation and this
partial order define an ordered groupoid.

Thus manifold data form another instance of groupoids ([B, arxiv,
2016]).
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Lie groups

Definition. A K-Lie group G has three compabile structures: the
ones of a group, a K-differentiable space, and a manifold structure.

Each of the three compatible structures is encoded by a groupoid
structure. These three groupoid structures are again compatible
with each other, which means that we have a threefold groupoid.

Forgetting the manifold (atlas), we still have a double groupoid.

Example. G = GL(n,K): a single chart (the natural one) suffices,
so the atlas is the trivial groupoid. The set G {1} has two groupoid
structures, one of which is a group, but the other not:

G {1} → {e}{1} = K
⇊ ↓

G ×K → {e} ×K
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Double groupoids

Definition. [Ehresmann, Brown,...]

A double groupoid is given by
four sets and a diagram of source and target projections

C11

π
⇒ C01

∂ ⇊ ∂ ⇊
C10

π
⇒ C00

as well as a diagram of unit sections, and products ∗ (on C11 and
C10) and • (on C11 and C01), and inversions, such that:

• each edge of the diagram forms a groupoid,
• each pair of structure maps from horizontal edges forms a
morphism of the vertical groupoids, and vice versa.

Saying that the product ∗ is a morphism for • (or vice versa),
amounts to require the interchange law on C11

(a ∗ b) • (c ∗ d) = (a • c) ∗ (b • d).

Example. If all edge groupoids are groups, then the interchange
law forces ∗ and • to be the same, commutative group law.
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n-fold groupoids

“iterate n times”:

“apply concept n times to itself”.

Definition. (Ehresmann) A (strict) n-fold groupoid is a groupoid
internal to the category of n − 1-fold groupoids.

Theorem. (Folklore among category theorists? [B, arxiv 2015])
Equivalently, an n-fold groupoid is given by 2n sets Ci , i ∈ I , where
the index set I is an n-hypercube, with diagrams of source and
target projections, unit sections, and with products and inversions
such that

• each edge diagram represents a groupoid,

• each face diagram represents a double groupoid.

Thus n-fold groupoids are “tamed”: they are algebraic structures
in the usual sense.
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Two images of a four-fold groupoid

For n = 4, the index set is a tesseract (4-cube). It can be realized
as the power set of the set {1, 2, 3, 4}:

∅
1 2

3

13
23

123

4

24

234

1234

14
12

124

134
34

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

This figure illustrates the standard induction step from 3 to 4.
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The index set can also be realized as the power set of a set denoted
by {1, 2, 1′, 2′}. The image then is adapted to the induction step
producing a double groupoid out of each single vertex:

∅
1

2

1′
11′

21′

121′

22′2′

21′2′
121′2′

12′

12

122′

1′2′
11′2′

b

b b

b

b

b

b

b

b

b

b

b b

b b

b b
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Higher order calculus

Definition. For each n ∈ N, let the symbol {n} be another copy
(“of n-th generation”) of {1}. If U is open in a topological
K-module, then its n-th order extended domain is

U{1,2,...,n} := ((U{1}){2} . . .){n}.

[Note : elements (x , v , t) of U{1} are triples, elements of U{1,2}

are 7-tuples, and elements of U{1,...,n} are 2n+1 − 1-tuples. This
looks bad!] Likewise, for a map f : U → W of class Cn, its n-th
order extended tangent map is defined by

f {1,...,n} := ((f {1}){2} . . .){n} : U{1,...,n} → W {1,...,n}.

[Note: {1, . . . , n} is the total set of our hypercube.]

Conceptual calculus: study (and understand) the extended
domains and tangent maps! Not yet accomplished...
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order extended tangent map is defined by

f {1,...,n} := ((f {1}){2} . . .){n} : U{1,...,n} → W {1,...,n}.

[Note: {1, . . . , n} is the total set of our hypercube.]

Conceptual calculus: study (and understand) the extended
domains and tangent maps! Not yet accomplished...
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Lie calculus

Theorem. The n-th order extended domain carries a natural
structure of n-fold groupoid. The same holds for (Hausdorff)
manifolds M instead of U.

Image: for t → 0, have a contraction towards the n-th order
tangent bundle T nG (cf. Connes’ tangent groupoid):

t = 1 t = 1
2

t = 0

Theorem. The n-th order extension G {1,...,n} of a Lie group G (or
of a Lie groupoid) carries a natural structure of n+1-fold groupoid.

Summary: understanding the higher order theory of Lie groups (or
groupoids) and understanding higher order calculus is equivalent.
That’s why I call it “Lie Calculus”.
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The trivial group

The trivial group 0 = {0} ⊂ {0}:

how trivial is it?

At first order: 0{1} = K with trivial groupoid structure.

At second order: 0{1,2} = K{2} = K×K×K : true groupoid.

At n-th order: 0{1,...,n} = K2n−1−1 is a true n − 1-fold groupoid. It
already contains all difficulties of the general case!

Definition. The family of higher groupoids 0{1,...,n}, n ∈ N, is
called the scaleoid. (Think of it as a sort of “gluon” gluing
together the points of a manifold. Understanding the scaleoid
means understanding conceptual calculus, e.g.:)

• “cubic” calculus versus “simplicial” calculus (divided
differences);

• the case of positive characteristic,

• is there a “super-scaleoid” ?
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But where are the loops in this story?

Well, here they are: they sit in the groupoid U{1}:

v = const
α

γ

β

b
(x , v)

b x b
x + tv

The horizontal distribution γ given by v = const represents the
canonical flat connection of the ambiant vector space V . This
defines a 3-web, hence a loop!
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Loops, connections, and differential geometry

“Definition.” A connection on a groupoid is given by a
compatible family of horizontal equivalence relations.

“Theorem.”
groupoid + connection =
family x •y z of compatible loops

Example. Lie groups again: there are two canonical connections,
corresponding to x •y z = xy−1z or to its opposite zy−1x .

Remark. Approach developed by L.V. Sabinin et al., see his book
Smooth Quasigroups and Loops – one of his aims is to develop a
purely algebraic differential geometry (loc. cit., p.5): Since we have
reformulated the notion of an affine connection in a purely
algebraic language, it is possible now to treat such a construction
over any field (finite if desired). ... Naturally, the complete
construction needs some non-ordinary calculus to be elaborated. –
Danger (cf. M. Atiyah, “Mathematics in the 20th century”):
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Loops, connections, and differential geometry

“Definition.” A connection on a groupoid is given by a
compatible family of horizontal equivalence relations.

“Theorem.”
groupoid + connection =
family x •y z of compatible loops

Example. Lie groups again: there are two canonical connections,
corresponding to x •y z = xy−1z or to its opposite zy−1x .

Remark. Approach developed by L.V. Sabinin et al., see his book
Smooth Quasigroups and Loops – one of his aims is to develop a
purely algebraic differential geometry (loc. cit., p.5): Since we have
reformulated the notion of an affine connection in a purely
algebraic language, it is possible now to treat such a construction
over any field (finite if desired). ... Naturally, the complete
construction needs some non-ordinary calculus to be elaborated. –
Danger (cf. M. Atiyah, “Mathematics in the 20th century”):
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Geometry and Algebra

M. Atiyah, in “Mathematics in the 20th century”:

Algebra is the offer made by the devil to the mathematician.

The
devil says: ‘I will give you this powerful machine, it will answer any
question you like. All you need to do is give me your soul: give up
geometry and you will have this marvellous machine.’ (Nowadays
you can think of it as a computer!) Of course we like to have
things both ways; we would probably cheat on the devil, pretend
we are selling our soul, and not give it away. Nevertheless, the
danger to our soul is there, because when you pass over into
algebraic calculation, essentially you stop thinking; you stop
thinking geometrically, you stop thinking about the meaning.
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Geometry and Algebra

M. Atiyah, in “Mathematics in the 20th century”:

Algebra is the offer made by the devil to the mathematician. The
devil says: ‘I will give you this powerful machine, it will answer any
question you like. All you need to do is give me your soul: give up
geometry and you will have this marvellous machine.’ (Nowadays
you can think of it as a computer!) Of course we like to have
things both ways; we would probably cheat on the devil, pretend
we are selling our soul, and not give it away. Nevertheless, the
danger to our soul is there, because when you pass over into
algebraic calculation, essentially you stop thinking; you stop
thinking geometrically, you stop thinking about the meaning.


