$\mathfrak{T h e ~ f i f t i e t h ~}$

Seminar

$\mathfrak{S o p h u s} \mathfrak{L i e}$,
$\mathfrak{B e d l e w o}, \quad$ XXV.IX. - I.X.MMXVI

Lie Calculus, Groupoids, and Loops

Wolfgang Bertram

Institut Elie Cartan de Lorraine at Nancy

$$
11011 / 1001 / 11111100000
$$

Lie Groups

Lie Groups

Lie groups: double (or even triple) structure:

Lie groups: double (or even triple) structure:

Groups, and their cousins

Groups, and their cousins

You know what a group is...

Groups, and their cousins

You know what a group is...
A loop is like a group without requiring associativity. A quasigroup is a like a loop but forgetting possible units.

Groups, and their cousins

You know what a group is...
A loop is like a group without requiring associativity. A quasigroup is a like a loop but forgetting possible units.

A groupoid is like a group, but the group law $*$ is not defined everywhere;

Groups, and their cousins

You know what a group is...
A loop is like a group without requiring associativity. A quasigroup is a like a loop but forgetting possible units.

A groupoid is like a group, but the group law $*$ is not defined everywhere; or one may say, like a group having many units:

Groups, and their cousins

You know what a group is...
A loop is like a group without requiring associativity. A quasigroup is a like a loop but forgetting possible units.

A groupoid is like a group, but the group law $*$ is not defined everywhere; or one may say, like a group having many units:

Loops and quasigroups

Definition. A quasigroup (Q, \cdot) is a set Q together with a binary product $\cdot: Q \times Q \rightarrow Q,(a, b) \mapsto a \cdot b$, such that, for each $y \in Q$, the left translations $x \mapsto y \cdot x$ and the right translations $x \mapsto x \cdot y$ are bijective maps from Q to Q.

Loops and quasigroups

Definition. A quasigroup (Q, \cdot) is a set Q together with a binary product $\cdot: Q \times Q \rightarrow Q,(a, b) \mapsto a \cdot b$, such that, for each $y \in Q$, the left translations $x \mapsto y \cdot x$ and the right translations $x \mapsto x \cdot y$ are bijective maps from Q to Q.
A loop is a quasigroup together with a unit element e.

Loops and quasigroups

Definition. A quasigroup (Q, \cdot) is a set Q together with a binary product $\cdot: Q \times Q \rightarrow Q,(a, b) \mapsto a \cdot b$, such that, for each $y \in Q$, the left translations $x \mapsto y \cdot x$ and the right translations $x \mapsto x \cdot y$ are bijective maps from Q to Q.
A loop is a quasigroup together with a unit element e.
Example 1. A group is a loop whose product is associative.

Loops and quasigroups

Definition. A quasigroup (Q, \cdot) is a set Q together with a binary product $: ~ Q \times Q \rightarrow Q,(a, b) \mapsto a \cdot b$, such that, for each $y \in Q$, the left translations $x \mapsto y \cdot x$ and the right translations $x \mapsto x \cdot y$ are bijective maps from Q to Q.
A loop is a quasigroup together with a unit element e.
Example 1. A group is a loop whose product is associative.
Example 2. The non-zero octonions form a non-associative loop with respect to multiplication.

Loops and quasigroups

Definition. A quasigroup (Q, \cdot) is a set Q together with a binary product $: ~ Q \times Q \rightarrow Q,(a, b) \mapsto a \cdot b$, such that, for each $y \in Q$, the left translations $x \mapsto y \cdot x$ and the right translations $x \mapsto x \cdot y$ are bijective maps from Q to Q.
A loop is a quasigroup together with a unit element e.
Example 1. A group is a loop whose product is associative.
Example 2. The non-zero octonions form a non-associative loop with respect to multiplication.
Example 3 (universal): 3-webs.

Loops and quasigroups

Definition. A quasigroup (Q, \cdot) is a set Q together with a binary product $: ~ Q \times Q \rightarrow Q,(a, b) \mapsto a \cdot b$, such that, for each $y \in Q$, the left translations $x \mapsto y \cdot x$ and the right translations $x \mapsto x \cdot y$ are bijective maps from Q to Q.
A loop is a quasigroup together with a unit element e.
Example 1. A group is a loop whose product is associative.
Example 2. The non-zero octonions form a non-associative loop with respect to multiplication.
Example 3 (universal): 3-webs. A 3-web looks like this:

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two).

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two). Let $A=M / \alpha, B=M / \beta, C=M / \gamma$ the three quotient spaces, Define the canonical product $A \times B \rightarrow C,(u, v) \mapsto u \cdot v:=[u \cap v]_{\gamma}$.

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two). Let $A=M / \alpha, B=M / \beta, C=M / \gamma$ the three quotient spaces, Define the canonical product $A \times B \rightarrow C,(u, v) \mapsto u \cdot v:=[u \cap v]_{\gamma}$.

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two). Let $A=M / \alpha, B=M / \beta, C=M / \gamma$ the three quotient spaces, Define the canonical product $A \times B \rightarrow C,(u, v) \mapsto u \cdot v:=[u \cap v]_{\gamma}$.

Theorem (easy: cf. Postmodern Algebra). The product $A \times B \rightarrow C$ is a dissociated (three-based) quasigroup, i.e., left and right translations are bijections. And so are the other five products, called parastrophic with the first one.

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two). Let $A=M / \alpha, B=M / \beta, C=M / \gamma$ the three quotient spaces, Define the canonical product $A \times B \rightarrow C,(u, v) \mapsto u \cdot v:=[u \cap v]_{\gamma}$.

Theorem (easy: cf. Postmodern Algebra). The product $A \times B \rightarrow C$ is a dissociated (three-based) quasigroup, i.e., left and right translations are bijections. And so are the other five products, called parastrophic with the first one.
Proof. $a \cdot x=c$

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two). Let $A=M / \alpha, B=M / \beta, C=M / \gamma$ the three quotient spaces, Define the canonical product $A \times B \rightarrow C,(u, v) \mapsto u \cdot v:=[u \cap v]_{\gamma}$.

Theorem (easy: cf. Postmodern Algebra). The product $A \times B \rightarrow C$ is a dissociated (three-based) quasigroup, i.e., left and right translations are bijections. And so are the other five products, called parastrophic with the first one.
Proof. $a \cdot x=c$ iff $a \cap x \cap c \neq \emptyset$

3-webs, and dissociated quasigroups

Definition. A 3-web (or: 3-net) on a set M is given by 3 equivalence relations α, β, γ that are mutually transversal (i.e., every equivalence class of one of the relations is a set of representatives for the equivalence classes of the other two). Let $A=M / \alpha, B=M / \beta, C=M / \gamma$ the three quotient spaces, Define the canonical product $A \times B \rightarrow C,(u, v) \mapsto u \cdot v:=[u \cap v]_{\gamma}$.

Theorem (easy: cf. Postmodern Algebra). The product $A \times B \rightarrow C$ is a dissociated (three-based) quasigroup, i.e., left and right translations are bijections. And so are the other five products, called parastrophic with the first one.
Proof. $a \cdot x=c$ iff $a \cap x \cap c \neq \emptyset$ iff $x=a \cdot c$.

3-webs with base point, and loops

3-webs with base point, and loops

Now: want product $A \times A \rightarrow A$ instead of $A \times B \rightarrow C$.

3-webs with base point, and loops

Now: want product $A \times A \rightarrow A$ instead of $A \times B \rightarrow C$. We fix a base point $o \in M$ and use it to identify A, B and C. There are several choices involved, so we get several loop structures on A.
For instance, $u \bullet v=\left(\left(u \cap[o]_{\beta}\right)_{\gamma} \cap\left(v \cap[o]_{\gamma}\right)_{\beta}\right)_{\alpha}$. One recognizes the usual "addition of points" on the line $[o]_{\gamma}$:

3-webs with base point, and loops

Now: want product $A \times A \rightarrow A$ instead of $A \times B \rightarrow C$. We fix a base point $o \in M$ and use it to identify A, B and C. There are several choices involved, so we get several loop structures on A.
For instance, $u \bullet v=\left(\left(u \cap[o]_{\beta}\right)_{\gamma} \cap\left(v \cap[o]_{\gamma}\right)_{\beta}\right)_{\alpha}$. One recognizes the usual "addition of points" on the line $[o]_{\gamma}$:

3-webs with base point, and loops

Now: want product $A \times A \rightarrow A$ instead of $A \times B \rightarrow C$. We fix a base point $o \in M$ and use it to identify A, B and C. There are several choices involved, so we get several loop structures on A.
For instance, $u \bullet v=\left(\left(u \cap[o]_{\beta}\right)_{\gamma} \cap\left(v \cap[o]_{\gamma}\right)_{\beta}\right)_{\alpha}$. One recognizes the usual "addition of points" on the line $[0]_{\gamma}$:

Theorem. This defines a loop, and every loop is obtained in this way!

3-webs with base point, and loops

Now: want product $A \times A \rightarrow A$ instead of $A \times B \rightarrow C$. We fix a base point $o \in M$ and use it to identify A, B and C. There are several choices involved, so we get several loop structures on A.
For instance, $u \bullet v=\left(\left(u \cap[o]_{\beta}\right)_{\gamma} \cap\left(v \cap[o]_{\gamma}\right)_{\beta}\right)_{\alpha}$. One recognizes the usual "addition of points" on the line $[o]_{\gamma}$:

Theorem. This defines a loop, and every loop is obtained in this way! - What about the choices? A nice mathematical structure...

Groupoids

Definition. A groupoid $\left(G_{1}, G_{0}, \alpha, \beta, *, 1, i\right)$ is given by:

Groupoids

Definition. A groupoid $\left(G_{1}, G_{0}, \alpha, \beta, *, 1, i\right)$ is given by: a set G_{0} of units (objects), a set G_{1} of morphisms, by source and targent maps $\alpha, \beta: G_{1} \rightarrow G_{0}$, an associative product $*$ defined on the set $\left\{(a, b) \in G_{1} \times G_{1} \mid \alpha(a)=\beta(b)\right\}$ such that $\alpha(a * b)=\alpha(b)$, $\beta(a * b)=\beta(a)$, a unit section $1: G_{0} \rightarrow G_{1}, x \mapsto 1_{x}$ such that $a * 1_{\alpha(a)}=a, 1_{\beta(b)} * b=b$, and an inversion map $i: G \rightarrow G$, $a \mapsto a^{-1}$ such that $a * a^{-1}=1_{\beta(a)}, a^{-1} * a=1_{\alpha(a)}$.

Groupoids

Definition. A groupoid $\left(G_{1}, G_{0}, \alpha, \beta, *, 1, i\right)$ is given by: a set G_{0} of units (objects), a set G_{1} of morphisms, by source and targent maps $\alpha, \beta: G_{1} \rightarrow G_{0}$, an associative product $*$ defined on the set $\left\{(a, b) \in G_{1} \times G_{1} \mid \alpha(a)=\beta(b)\right\}$ such that $\alpha(a * b)=\alpha(b)$, $\beta(a * b)=\beta(a)$, a unit section $1: G_{0} \rightarrow G_{1}, x \mapsto 1_{x}$ such that $a * 1_{\alpha(a)}=a, 1_{\beta(b)} * b=b$, and an inversion map $i: G \rightarrow G$, $a \mapsto a^{-1}$ such that $a * a^{-1}=1_{\beta(a)}, a^{-1} * a=1_{\alpha(a)}$.
A groupoid may be visualized like this:

Groupoids: examples

Groupoids: examples

Example 1. When $\alpha=\beta: G_{1}$ is a group bundle over the base G_{0}. If, moreover, $G_{0}=\{e\}$, then G_{1} is a group with unit e.

Groupoids: examples

Example 1. When $\alpha=\beta: G_{1}$ is a group bundle over the base G_{0}. If, moreover, $G_{0}=\{e\}$, then G_{1} is a group with unit e.

Example 2. When $\alpha \top \beta$, i.e., fibers of α and β are transversal, then G is a pair groupoid: $G_{0}=M$ is an arbitrary set,

$$
\begin{aligned}
G_{1}=M \times M, & \alpha(x, y)=y, \beta(x, y)=x, 1_{x}=(x, x) \\
(x, y) *(y, z)=(x, z), & (x, y)^{-1}=(y, x) .
\end{aligned}
$$

Groupoids: examples

Example 1. When $\alpha=\beta: G_{1}$ is a group bundle over the base G_{0}. If, moreover, $G_{0}=\{e\}$, then G_{1} is a group with unit e.

Example 2. When $\alpha \top \beta$, i.e., fibers of α and β are transversal, then G is a pair groupoid: $G_{0}=M$ is an arbitrary set,

$$
\begin{aligned}
G_{1}=M \times M, & \alpha(x, y)=y, \beta(x, y)=x, 1_{x}=(x, x), \\
(x, y) *(y, z)=(x, z), & (x, y)^{-1}=(y, x) .
\end{aligned}
$$

Example 3. An equivalence relation $\epsilon \subset(M \times M)$ defines a groupoid $\left(G_{1}, G_{0}\right)=(\epsilon, M)$ (subgroupoid of the pair groupoid).

Groupoids: examples

Example 1. When $\alpha=\beta: G_{1}$ is a group bundle over the base G_{0}. If, moreover, $G_{0}=\{e\}$, then G_{1} is a group with unit e.

Example 2. When $\alpha \top \beta$, i.e., fibers of α and β are transversal, then G is a pair groupoid: $G_{0}=M$ is an arbitrary set,

$$
\begin{aligned}
G_{1}=M \times M, & \alpha(x, y)=y, \beta(x, y)=x, 1_{x}=(x, x), \\
(x, y) *(y, z)=(x, z), & (x, y)^{-1}=(y, x) .
\end{aligned}
$$

Example 3. An equivalence relation $\epsilon \subset(M \times M)$ defines a groupoid $\left(G_{1}, G_{0}\right)=(\epsilon, M)$ (subgroupoid of the pair groupoid).

A general groupoid is a kind of mixture of these examples.

Groupoids: examples

Example 1. When $\alpha=\beta$: G_{1} is a group bundle over the base G_{0}. If, moreover, $G_{0}=\{e\}$, then G_{1} is a group with unit e.

Example 2. When $\alpha \top \beta$, i.e., fibers of α and β are transversal, then G is a pair groupoid: $G_{0}=M$ is an arbitrary set,

$$
\begin{aligned}
G_{1}=M \times M, & \alpha(x, y)=y, \beta(x, y)=x, 1_{x}=(x, x), \\
(x, y) *(y, z)=(x, z), & (x, y)^{-1}=(y, x) .
\end{aligned}
$$

Example 3. An equivalence relation $\epsilon \subset(M \times M)$ defines a groupoid $\left(G_{1}, G_{0}\right)=(\epsilon, M)$ (subgroupoid of the pair groupoid).

A general groupoid is a kind of mixture of these examples.
Question: what is the relation between 3-webs and groupoids?

Groupoids: examples

Example 1. When $\alpha=\beta$: G_{1} is a group bundle over the base G_{0}. If, moreover, $G_{0}=\{e\}$, then G_{1} is a group with unit e.

Example 2. When $\alpha \top \beta$, i.e., fibers of α and β are transversal, then G is a pair groupoid: $G_{0}=M$ is an arbitrary set,

$$
\begin{aligned}
G_{1}=M \times M, & \alpha(x, y)=y, \beta(x, y)=x, 1_{x}=(x, x), \\
(x, y) *(y, z)=(x, z), & (x, y)^{-1}=(y, x) .
\end{aligned}
$$

Example 3. An equivalence relation $\epsilon \subset(M \times M)$ defines a groupoid $\left(G_{1}, G_{0}\right)=(\epsilon, M)$ (subgroupoid of the pair groupoid).

A general groupoid is a kind of mixture of these examples.
Question: what is the relation between 3-webs and groupoids? (See later.)

Differential Calculus

Observation. (Folklore? Fermat, Caratheodory, Hadamard, [BGN]...)

Differential Calculus

Observation. (Folklore? Fermat, Caratheodory, Hadamard, [BGN]...) Let $f: \mathbb{R}^{n} \supset U \rightarrow W=\mathbb{R}^{m}$ be a map. Then f is of class C^{1} if, and only if, its slope map

$$
f^{[1]}:(x, v, t) \mapsto f^{[1]}(x, v, t):=\frac{f(x+t v)-f(x)}{t}
$$

admits a continuous extension to a map defined also for $t=0$. Then $d f(x) v:=f^{[1]}(x, v, 0)$ is the differential of f at x.

Differential Calculus

Observation. (Folklore? Fermat, Caratheodory, Hadamard, $[B G N] \ldots$) Let $f: \mathbb{R}^{n} \supset U \rightarrow W=\mathbb{R}^{m}$ be a map. Then f is of class C^{1} if, and only if, its slope map

$$
f^{[1]}:(x, v, t) \mapsto f^{[1]}(x, v, t):=\frac{f(x+t v)-f(x)}{t}
$$

admits a continuous extension to a map defined also for $t=0$. Then $d f(x) v:=f^{[1]}(x, v, 0)$ is the differential of f at x.
Definition. [BGN] A map f defined on an open subset of a topological module over a good topological ring \mathbb{K} ("good": 0 belongs to the closure of the unit group \mathbb{K}^{\times}) is called of class C^{1} over \mathbb{K} if it satisfies the last condition from the observation.

Differential Calculus

Observation. (Folklore? Fermat, Caratheodory, Hadamard, $[B G N] \ldots$) Let $f: \mathbb{R}^{n} \supset U \rightarrow W=\mathbb{R}^{m}$ be a map. Then f is of class C^{1} if, and only if, its slope map

$$
f^{[1]}:(x, v, t) \mapsto f^{[1]}(x, v, t):=\frac{f(x+t v)-f(x)}{t}
$$

admits a continuous extension to a map defined also for $t=0$. Then $d f(x) v:=f^{[1]}(x, v, 0)$ is the differential of f at x.
Definition. [BGN] A map f defined on an open subset of a topological module over a good topological ring \mathbb{K} ("good": 0 belongs to the closure of the unit group \mathbb{K}^{\times}) is called of class C^{1} over \mathbb{K} if it satisfies the last condition from the observation.

Task. Develop all analytic, algebraic and geometric consequences of this definition! [BGN], [B, Mem AMS 2008],... [B, 2014, 15]...

Differential Calculus

Observation. (Folklore? Fermat, Caratheodory, Hadamard, [BGN]...) Let $f: \mathbb{R}^{n} \supset U \rightarrow W=\mathbb{R}^{m}$ be a map. Then f is of class C^{1} if, and only if, its slope map

$$
f^{[1]}:(x, v, t) \mapsto f^{[1]}(x, v, t):=\frac{f(x+t v)-f(x)}{t}
$$

admits a continuous extension to a map defined also for $t=0$. Then $d f(x) v:=f^{[1]}(x, v, 0)$ is the differential of f at x.

Definition. [BGN] A map f defined on an open subset of a topological module over a good topological ring \mathbb{K} ("good": 0 belongs to the closure of the unit group \mathbb{K}^{\times}) is called of class C^{1} over \mathbb{K} if it satisfies the last condition from the observation.

Task. Develop all analytic, algebraic and geometric consequences of this definition! [BGN], [B, Mem AMS 2008],... [B, 2014, 15]...
Open problems. What can we do if \mathbb{K} is discrete (e.g., finite)? And what about (non) commutativity of \mathbb{K} ?

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:
$U^{\{1\}}:=\{(x, v, t) \mid x \in U, v \in V, t \in \mathbb{K}: x+t v \in U\}$

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:
$U^{\{1\}}:=\{(x, v, t) \mid x \in U, v \in V, t \in \mathbb{K}: x+t v \in U\}$
$f^{\{1\}}: U^{\{1\}} \rightarrow W^{\{1\}},(x, v, t) \mapsto\left(f(x), f^{[1]}(x, v, t), t\right)$
Theorem (The Chain Rule).

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:
$U^{\{1\}}:=\{(x, v, t) \mid x \in U, v \in V, t \in \mathbb{K}: x+t v \in U\}$
$f^{\{1\}}: U^{\{1\}} \rightarrow W^{\{1\}},(x, v, t) \mapsto\left(f(x), f^{[1]}(x, v, t), t\right)$
Theorem (The Chain Rule). The symbol $\{1\}$ is a functor:

$$
(g \circ f)^{\{1\}}=g^{\{1\}} \circ f\{1\}
$$

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:
$U^{\{1\}}:=\{(x, v, t) \mid x \in U, v \in V, t \in \mathbb{K}: x+t v \in U\}$
$f^{\{1\}}: U^{\{1\}} \rightarrow W^{\{1\}},(x, v, t) \mapsto\left(f(x), f^{[1]}(x, v, t), t\right)$
Theorem (The Chain Rule). The symbol $\{1\}$ is a functor:

$$
(g \circ f)^{\{1\}}=g^{\{1\}} \circ f^{\{1\}}
$$

Proof. For $t \in \mathbb{K}^{\times}$, direct computation; for $t=0$ by continuous extension.

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:
$U^{\{1\}}:=\{(x, v, t) \mid x \in U, v \in V, t \in \mathbb{K}: x+t v \in U\}$
$f^{\{1\}}: U^{\{1\}} \rightarrow W^{\{1\}},(x, v, t) \mapsto\left(f(x), f^{[1]}(x, v, t), t\right)$
Theorem (The Chain Rule). The symbol $\{1\}$ is a functor:

$$
(g \circ f)^{\{1\}}=g^{\{1\}} \circ f^{\{1\}}
$$

Proof. For $t \in \mathbb{K}^{\times}$, direct computation; for $t=0$ by continuous extension.
"Conceptual calculus": study this functor!

The Chain Rule, and "Conceptual Calculus"

Notation: \mathbb{K} good (as above), $f: V \supset U \rightarrow W$ as above.
Definition. Extended domain, extended map:
$U^{\{1\}}:=\{(x, v, t) \mid x \in U, v \in V, t \in \mathbb{K}: x+t v \in U\}$
$f^{\{1\}}: U^{\{1\}} \rightarrow W^{\{1\}},(x, v, t) \mapsto\left(f(x), f^{[1]}(x, v, t), t\right)$
Theorem (The Chain Rule). The symbol $\{1\}$ is a functor:

$$
(g \circ f)^{\{1\}}=g^{\{1\}} \circ f^{\{1\}}
$$

Proof. For $t \in \mathbb{K}^{\times}$, direct computation; for $t=0$ by continuous extension.
"Conceptual calculus": study this functor! Its main feature is related to the fact that the differential should be a linear map:

Calculus and groupoids

Calculus and groupoids

Theorem (extended tangent groupoid). The extended domain $U^{\{1\}}$ carries a natural groupoid structure, and $f\{1\}$ is a morphism of groupoids.

Calculus and groupoids

Theorem (extended tangent groupoid). The extended domain $U^{\{1\}}$ carries a natural groupoid structure, and $f\{1\}$ is a morphism of groupoids. The groupoid structure is given by

$$
\begin{array}{ll}
\left(G_{1}, G_{0}\right)=\left(U^{\{1\}}, U \times \mathbb{K}\right), & \alpha(x, v, t)=(x, t), \\
\beta(x, v, t)=(x+t v, t), & (y, w, t) *(x, v, t)=(y, w+v, t)
\end{array}
$$

Calculus and groupoids

Theorem (extended tangent groupoid). The extended domain

 $U^{\{1\}}$ carries a natural groupoid structure, and $f\{1\}$ is a morphism of groupoids. The groupoid structure is given by$$
\begin{array}{ll}
\left(G_{1}, G_{0}\right)=\left(U^{\{1\}}, U \times \mathbb{K}\right), & \alpha(x, v, t)=(x, t), \\
\beta(x, v, t)=(x+t v, t), & (y, w, t) *(x, v, t)=(y, w+v, t) .
\end{array}
$$

For any fixed t, these formulae define again groupoids U_{t}; when $t \in \mathbb{K}^{\times}$, then U_{t} is isomorphic to the pair groupoid on U; and U_{0} is the tangent bundle of U.

Calculus and groupoids

Theorem (extended tangent groupoid). The extended domain

 $U^{\{1\}}$ carries a natural groupoid structure, and $f\{1\}$ is a morphism of groupoids. The groupoid structure is given by$$
\begin{array}{ll}
\left(G_{1}, G_{0}\right)=\left(U^{\{1\}}, U \times \mathbb{K}\right), & \alpha(x, v, t)=(x, t), \\
\beta(x, v, t)=(x+t v, t), & (y, w, t) *(x, v, t)=(y, w+v, t)
\end{array}
$$

For any fixed t, these formulae define again groupoids U_{t}; when $t \in \mathbb{K}^{\times}$, then U_{t} is isomorphic to the pair groupoid on U; and U_{0} is the tangent bundle of U.

Corollary. For a C^{1}-map f, the differential $d f(x): V \rightarrow W$ is an additive map (a group morphism).
Proof. Take $t=0$ in the preceding theorem.

Calculus and groupoids

Theorem (extended tangent groupoid). The extended domain

 $U^{\{1\}}$ carries a natural groupoid structure, and $f\{1\}$ is a morphism of groupoids. The groupoid structure is given by$$
\begin{array}{ll}
\left(G_{1}, G_{0}\right)=\left(U^{\{1\}}, U \times \mathbb{K}\right), & \alpha(x, v, t)=(x, t), \\
\quad \beta(x, v, t)=(x+t v, t), & (y, w, t) *(x, v, t)=(y, w+v, t) .
\end{array}
$$

For any fixed t, these formulae define again groupoids U_{t}; when $t \in \mathbb{K}^{\times}$, then U_{t} is isomorphic to the pair groupoid on U; and U_{0} is the tangent bundle of U.
Corollary. For a C^{1}-map f, the differential $d f(x): V \rightarrow W$ is an additive map (a group morphism).
Proof. Take $t=0$ in the preceding theorem.
Methodological remark. In usual calculus, linearity of the differential is imposed by definition. In BGN-calculus, it is a theorem. By Occam's razor, this is an argument in favor of BGN-calculus.

Manifolds

Thanks to the Chain Rule and the preceding theorem, the groupoids $U^{\{1\}}$ can be glued together: to every (Hausdorff) manifold M is associated a groupoid $M^{\{1\}}$ over $M \times \mathbb{K}$.

Manifolds

Thanks to the Chain Rule and the preceding theorem, the groupoids $U^{\{1\}}$ can be glued together: to every (Hausdorff) manifold M is associated a groupoid $M^{\{1\}}$ over $M \times \mathbb{K}$.

To prove this, one should start with a formal analysis of the concept of manifold: charts, atlasses, transition functions...

Manifolds

Thanks to the Chain Rule and the preceding theorem, the groupoids $U^{\{1\}}$ can be glued together: to every (Hausdorff) manifold M is associated a groupoid $M^{\{1\}}$ over $M \times \mathbb{K}$.

To prove this, one should start with a formal analysis of the concept of manifold: charts, atlasses, transition functions...

Say that two charts are equivalent if they have the same domain of definition, and say that one chart is smaller than another if it is a restriction of the other.

Manifolds

Thanks to the Chain Rule and the preceding theorem, the groupoids $U^{\{1\}}$ can be glued together: to every (Hausdorff) manifold M is associated a groupoid $M^{\{1\}}$ over $M \times \mathbb{K}$.

To prove this, one should start with a formal analysis of the concept of manifold: charts, atlasses, transition functions...

Say that two charts are equivalent if they have the same domain of definition, and say that one chart is smaller than another if it is a restriction of the other.

Theorem. Gluing data with this equivalence relation and this partial order define an ordered groupoid.

Thus manifold data form another instance of groupoids ([B, arxiv, 2016]).

Lie groups

Definition. $A \mathbb{K}$-Lie group G has three compabile structures: the ones of a group, a \mathbb{K}-differentiable space, and a manifold structure.

Lie groups

Definition. $A \mathbb{K}$-Lie group G has three compabile structures: the ones of a group, a \mathbb{K}-differentiable space, and a manifold structure.

Each of the three compatible structures is encoded by a groupoid structure. These three groupoid structures are again compatible with each other, which means that we have a threefold groupoid.

Lie groups

Definition. $A \mathbb{K}$-Lie group G has three compabile structures: the ones of a group, a \mathbb{K}-differentiable space, and a manifold structure.

Each of the three compatible structures is encoded by a groupoid structure. These three groupoid structures are again compatible with each other, which means that we have a threefold groupoid.

Forgetting the manifold (atlas), we still have a double groupoid.
Example. $G=\mathrm{GL}(n, \mathbb{K})$: a single chart (the natural one) suffices, so the atlas is the trivial groupoid. The set $G^{\{1\}}$ has two groupoid structures, one of which is a group, but the other not:

Double groupoids

Definition. [Ehresmann, Brown,...]

Double groupoids

Definition. [Ehresmann, Brown,...] A double groupoid is given by four sets and a diagram of source and target projections

C_{11}	$\stackrel{\pi}{\rightrightarrows}$	C_{01}
$\partial \downarrow$		$\partial \downarrow \downarrow$
C_{10}	$\stackrel{\pi}{\rightrightarrows}$	C_{00}

as well as a diagram of unit sections, and products * (on C_{11} and
C_{10}) and • (on C_{11} and C_{01}), and inversions, such that:

- each edge of the diagram forms a groupoid,
- each pair of structure maps from horizontal edges forms a morphism of the vertical groupoids, and vice versa.

Double groupoids

Definition. [Ehresmann, Brown,...] A double groupoid is given by four sets and a diagram of source and target projections

C_{11}	$\stackrel{\pi}{\rightrightarrows}$	C_{01}
$\partial \downarrow \downarrow$		$\partial \downarrow \downarrow$
C_{10}	$\stackrel{\pi}{\rightrightarrows}$	C_{00}

as well as a diagram of unit sections, and products * (on C_{11} and C_{10}) and • (on C_{11} and C_{01}), and inversions, such that:

- each edge of the diagram forms a groupoid,
- each pair of structure maps from horizontal edges forms a morphism of the vertical groupoids, and vice versa.
Saying that the product $*$ is a morphism for \bullet (or vice versa), amounts to require the interchange law on C_{11}

$$
(a * b) \bullet(c * d)=(a \bullet c) *(b \bullet d)
$$

Double groupoids

Definition. [Ehresmann, Brown,...] A double groupoid is given by four sets and a diagram of source and target projections

C_{11}	$\stackrel{\pi}{\rightrightarrows}$	C_{01}
$\partial \downarrow \downarrow$		$\partial \downarrow \downarrow$
C_{10}	$\stackrel{\pi}{\rightrightarrows}$	C_{00}

as well as a diagram of unit sections, and products * (on C_{11} and C_{10}) and • (on C_{11} and C_{01}), and inversions, such that:

- each edge of the diagram forms a groupoid,
- each pair of structure maps from horizontal edges forms a morphism of the vertical groupoids, and vice versa.
Saying that the product $*$ is a morphism for \bullet (or vice versa), amounts to require the interchange law on C_{11}

$$
(a * b) \bullet(c * d)=(a \bullet c) *(b \bullet d)
$$

Example. If all edge groupoids are groups, then the interchange law forces $*$ and \bullet to be the same, commutative group law.

n-fold groupoids

"iterate n times":

n-fold groupoids

"iterate n times": "apply concept n times to itself".

n-fold groupoids

"iterate n times": "apply concept n times to itself".
Definition. (Ehresmann) A (strict) n-fold groupoid is a groupoid internal to the category of $n-1$-fold groupoids.

n-fold groupoids

"iterate n times": "apply concept n times to itself".
Definition. (Ehresmann) A (strict) n-fold groupoid is a groupoid internal to the category of $n-1$-fold groupoids.

Theorem. (Folklore among category theorists? [B, arxiv 2015])

n-fold groupoids

"iterate n times": "apply concept n times to itself".
Definition. (Ehresmann) A (strict) n-fold groupoid is a groupoid internal to the category of n - 1 -fold groupoids.

Theorem. (Folklore among category theorists? [B, arxiv 2015]) Equivalently, an n-fold groupoid is given by 2^{n} sets $C_{i}, i \in I$, where the index set I is an n-hypercube, with diagrams of source and target projections, unit sections, and with products and inversions such that

- each edge diagram represents a groupoid,
- each face diagram represents a double groupoid.

Thus n-fold groupoids are "tamed": they are algebraic structures in the usual sense.

Two images of a four-fold groupoid

For $n=4$, the index set is a tesseract (4-cube). It can be realized as the power set of the set $\{1,2,3,4\}$:

Two images of a four-fold groupoid

For $n=4$, the index set is a tesseract (4-cube). It can be realized as the power set of the set $\{1,2,3,4\}$:

This figure illustrates the standard induction step from 3 to 4 .

The index set can also be realized as the power set of a set denoted by $\left\{1,2,1^{\prime}, 2^{\prime}\right\}$. The image then is adapted to the induction step producing a double groupoid out of each single vertex:

The index set can also be realized as the power set of a set denoted by $\left\{1,2,1^{\prime}, 2^{\prime}\right\}$. The image then is adapted to the induction step producing a double groupoid out of each single vertex:

Higher order calculus

Higher order calculus

Definition. For each $n \in \mathbb{N}$, let the symbol $\{n\}$ be another copy ("of n-th generation") of $\{1\}$.

Higher order calculus

Definition. For each $n \in \mathbb{N}$, let the symbol $\{n\}$ be another copy ("of n-th generation") of $\{1\}$. If U is open in a topological \mathbb{K}-module, then its n-th order extended domain is

$$
U^{\{1,2, \ldots, n\}}:=\left(\left(U^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}}
$$

[Note : elements (x, v, t) of $U^{\{1\}}$ are triples, elements of $U^{\{1,2\}}$ are 7 -tuples, and elements of $U^{\{1, \ldots, n\}}$ are $2^{n+1}-1$-tuples. This looks bad!]

Higher order calculus

Definition. For each $n \in \mathbb{N}$, let the symbol $\{n\}$ be another copy ("of n-th generation") of $\{1\}$. If U is open in a topological \mathbb{K}-module, then its n-th order extended domain is

$$
U^{\{1,2, \ldots, n\}}:=\left(\left(U^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}}
$$

[Note : elements (x, v, t) of $U^{\{1\}}$ are triples, elements of $U^{\{1,2\}}$ are 7 -tuples, and elements of $U^{\{1, \ldots, n\}}$ are $2^{n+1}-1$-tuples. This looks bad!] Likewise, for a map $f: U \rightarrow W$ of class C^{n}, its n-th order extended tangent map is defined by

$$
f^{\{1, \ldots, n\}}:=\left(\left(f^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}}: U^{\{1, \ldots, n\}} \rightarrow W^{\{1, \ldots, n\}}
$$

[Note: $\{1, \ldots, n\}$ is the total set of our hypercube.]

Higher order calculus

Definition. For each $n \in \mathbb{N}$, let the symbol $\{n\}$ be another copy ("of n-th generation") of $\{1\}$. If U is open in a topological \mathbb{K}-module, then its n-th order extended domain is

$$
U^{\{1,2, \ldots, n\}}:=\left(\left(U^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}} .
$$

[Note : elements (x, v, t) of $U^{\{1\}}$ are triples, elements of $U^{\{1,2\}}$ are 7 -tuples, and elements of $U^{\{1, \ldots, n\}}$ are $2^{n+1}-1$-tuples. This looks bad!] Likewise, for a map $f: U \rightarrow W$ of class C^{n}, its n-th order extended tangent map is defined by

$$
f^{\{1, \ldots, n\}}:=\left(\left(f^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}}: U^{\{1, \ldots, n\}} \rightarrow W^{\{1, \ldots, n\}}
$$

[Note: $\{1, \ldots, n\}$ is the total set of our hypercube.]
Conceptual calculus: study (and understand) the extended domains and tangent maps!

Higher order calculus

Definition. For each $n \in \mathbb{N}$, let the symbol $\{n\}$ be another copy ("of n-th generation") of $\{1\}$. If U is open in a topological \mathbb{K}-module, then its n-th order extended domain is

$$
U^{\{1,2, \ldots, n\}}:=\left(\left(U^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}} .
$$

[Note : elements (x, v, t) of $U^{\{1\}}$ are triples, elements of $U^{\{1,2\}}$ are 7 -tuples, and elements of $U^{\{1, \ldots, n\}}$ are $2^{n+1}-1$-tuples. This looks bad!] Likewise, for a map $f: U \rightarrow W$ of class C^{n}, its n-th order extended tangent map is defined by

$$
f^{\{1, \ldots, n\}}:=\left(\left(f^{\{1\}}\right)^{\{2\}} \ldots\right)^{\{n\}}: U^{\{1, \ldots, n\}} \rightarrow W^{\{1, \ldots, n\}} .
$$

[Note: $\{1, \ldots, n\}$ is the total set of our hypercube.]
Conceptual calculus: study (and understand) the extended domains and tangent maps! Not yet accomplished...

Lie calculus

Theorem. The n-th order extended domain carries a natural structure of n-fold groupoid. The same holds for (Hausdorff) manifolds M instead of U.

Lie calculus

Theorem. The n-th order extended domain carries a natural structure of n-fold groupoid. The same holds for (Hausdorff) manifolds M instead of U.

Image: for $t \rightarrow 0$, have a contraction towards the n-th order tangent bundle $T^{n} G$ (cf. Connes' tangent groupoid):

Lie calculus

Theorem. The n-th order extended domain carries a natural structure of n-fold groupoid. The same holds for (Hausdorff) manifolds M instead of U.

Image: for $t \rightarrow 0$, have a contraction towards the n-th order tangent bundle $T^{n} G$ (cf. Connes' tangent groupoid):

Theorem. The n-th order extension $G^{\{1, \ldots, n\}}$ of a Lie group G (or of a Lie groupoid) carries a natural structure of $n+1$-fold groupoid.

Lie calculus

Theorem. The n-th order extended domain carries a natural structure of n-fold groupoid. The same holds for (Hausdorff) manifolds M instead of U.

Image: for $t \rightarrow 0$, have a contraction towards the n-th order tangent bundle $T^{n} G$ (cf. Connes' tangent groupoid):

Theorem. The n-th order extension $G\{1, \ldots, n\}$ of a Lie group G (or of a Lie groupoid) carries a natural structure of $n+1$-fold groupoid.
Summary: understanding the higher order theory of Lie groups (or groupoids) and understanding higher order calculus is equivalent. That's why I call it "Lie Calculus".

The trivial group

The trivial group $0=\{0\} \subset\{0\}:$

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0^{\{1\}}=\mathbb{K}$ with trivial groupoid structure.

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0\{1\}=\mathbb{K}$ with trivial groupoid structure.
At second order: $0^{\{1,2\}}=\mathbb{K}^{\{2\}}=\mathbb{K} \times \mathbb{K} \times \mathbb{K}$: true groupoid.

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0\{1\}=\mathbb{K}$ with trivial groupoid structure.
At second order: $0^{\{1,2\}}=\mathbb{K}^{\{2\}}=\mathbb{K} \times \mathbb{K} \times \mathbb{K}$: true groupoid. At n-th order: $0\{1, \ldots, n\}=\mathbb{K}^{2^{n-1}-1}$ is a true $n-1$-fold groupoid. It already contains all difficulties of the general case!

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0\{1\}=\mathbb{K}$ with trivial groupoid structure.
At second order: $0^{\{1,2\}}=\mathbb{K}^{\{2\}}=\mathbb{K} \times \mathbb{K} \times \mathbb{K}$: true groupoid. At n-th order: $0\{1, \ldots, n\}=\mathbb{K}^{2^{n-1}-1}$ is a true $n-1$-fold groupoid. It already contains all difficulties of the general case!

Definition. The family of higher groupoids $0\{1, \ldots, n\}, n \in \mathbb{N}$, is called the scaleoid. (Think of it as a sort of "gluon" gluing together the points of a manifold. Understanding the scaleoid means understanding conceptual calculus, e.g.:)

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0\{1\}=\mathbb{K}$ with trivial groupoid structure.
At second order: $0^{\{1,2\}}=\mathbb{K}^{\{2\}}=\mathbb{K} \times \mathbb{K} \times \mathbb{K}$: true groupoid.
At n-th order: $0\{1, \ldots, n\}=\mathbb{K}^{2^{n-1}-1}$ is a true $n-1$-fold groupoid. It already contains all difficulties of the general case!

Definition. The family of higher groupoids $0\{1, \ldots, n\}, n \in \mathbb{N}$, is called the scaleoid. (Think of it as a sort of "gluon" gluing together the points of a manifold. Understanding the scaleoid means understanding conceptual calculus, e.g.:)

- "cubic" calculus versus "simplicial" calculus (divided differences);

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0\{1\}=\mathbb{K}$ with trivial groupoid structure.
At second order: $0^{\{1,2\}}=\mathbb{K}^{\{2\}}=\mathbb{K} \times \mathbb{K} \times \mathbb{K}$: true groupoid.
At n-th order: $0\{1, \ldots, n\}=\mathbb{K}^{2^{n-1}-1}$ is a true $n-1$-fold groupoid. It already contains all difficulties of the general case!

Definition. The family of higher groupoids $0\{1, \ldots, n\}, n \in \mathbb{N}$, is called the scaleoid. (Think of it as a sort of "gluon" gluing together the points of a manifold. Understanding the scaleoid means understanding conceptual calculus, e.g.:)

- "cubic" calculus versus "simplicial" calculus (divided differences);
- the case of positive characteristic,

The trivial group

The trivial group $0=\{0\} \subset\{0\}$: how trivial is it?
At first order: $0\{1\}=\mathbb{K}$ with trivial groupoid structure.
At second order: $0^{\{1,2\}}=\mathbb{K}^{\{2\}}=\mathbb{K} \times \mathbb{K} \times \mathbb{K}$: true groupoid.
At n-th order: $0\{1, \ldots, n\}=\mathbb{K}^{2^{n-1}-1}$ is a true $n-1$-fold groupoid. It already contains all difficulties of the general case!

Definition. The family of higher groupoids $0\{1, \ldots, n\}, n \in \mathbb{N}$, is called the scaleoid. (Think of it as a sort of "gluon" gluing together the points of a manifold. Understanding the scaleoid means understanding conceptual calculus, e.g.:)

- "cubic" calculus versus "simplicial" calculus (divided differences);
- the case of positive characteristic,
- is there a "super-scaleoid" ?

But where are the loops in this story?

But where are the loops in this story?

Well, here they are: they sit in the groupoid $U^{\{1\}}$:

The horizontal distribution γ given by $v=$ const represents the canonical flat connection of the ambiant vector space V. This defines a 3-web, hence a loop!

Loops, connections, and differential geometry

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.
"Theorem."
groupoid + connection $=$
family $x \bullet y z$ of compatible loops

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.
"Theorem."
groupoid + connection $=$
family $x \bullet y z$ of compatible loops
Example. Lie groups again: there are two canonical connections, corresponding to $x \bullet y z=x y^{-1} z$ or to its opposite $z y^{-1} x$.

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.
"Theorem."
groupoid + connection $=$
family $x \bullet_{y} z$ of compatible loops
Example. Lie groups again: there are two canonical connections, corresponding to $x \bullet_{y} z=x y^{-1} z$ or to its opposite $z y^{-1} x$.
Remark. Approach developed by L.V. Sabinin et al., see his book Smooth Quasigroups and Loops - one of his aims is to develop a purely algebraic differential geometry (loc. cit., p.5):

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.
"Theorem."
groupoid + connection $=$
family $x \bullet y z$ of compatible loops
Example. Lie groups again: there are two canonical connections, corresponding to $x \bullet_{y} z=x y^{-1} z$ or to its opposite $z y^{-1} x$.
Remark. Approach developed by L.V. Sabinin et al., see his book Smooth Quasigroups and Loops - one of his aims is to develop a purely algebraic differential geometry (loc. cit., p.5): Since we have reformulated the notion of an affine connection in a purely algebraic language, it is possible now to treat such a construction over any field (finite if desired).

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.

"Theorem."

groupoid + connection $=$
family $x \bullet y z$ of compatible loops
Example. Lie groups again: there are two canonical connections, corresponding to $x \bullet_{y} z=x y^{-1} z$ or to its opposite $z y^{-1} x$.
Remark. Approach developed by L.V. Sabinin et al., see his book Smooth Quasigroups and Loops - one of his aims is to develop a purely algebraic differential geometry (loc. cit., p.5): Since we have reformulated the notion of an affine connection in a purely algebraic language, it is possible now to treat such a construction over any field (finite if desired). ... Naturally, the complete construction needs some non-ordinary calculus to be elaborated.

Loops, connections, and differential geometry

"Definition." A connection on a groupoid is given by a compatible family of horizontal equivalence relations.

"Theorem."

groupoid + connection $=$
family $x \bullet y z$ of compatible loops
Example. Lie groups again: there are two canonical connections, corresponding to $x \bullet_{y} z=x y^{-1} z$ or to its opposite $z y^{-1} x$.
Remark. Approach developed by L.V. Sabinin et al., see his book Smooth Quasigroups and Loops - one of his aims is to develop a purely algebraic differential geometry (loc. cit., p.5): Since we have reformulated the notion of an affine connection in a purely algebraic language, it is possible now to treat such a construction over any field (finite if desired). ... Naturally, the complete construction needs some non-ordinary calculus to be elaborated. Danger (cf. M. Atiyah, "Mathematics in the 20th century"):

Geometry and Algebra

M. Atiyah, in "Mathematics in the 20th century":

Algebra is the offer made by the devil to the mathematician.

Geometry and Algebra

M. Atiyah, in "Mathematics in the 20th century":

Algebra is the offer made by the devil to the mathematician. The devil says: 'I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine.' (Nowadays you can think of it as a computer!) Of course we like to have things both ways; we would probably cheat on the devil, pretend we are selling our soul, and not give it away. Nevertheless, the danger to our soul is there, because when you pass over into algebraic calculation, essentially you stop thinking; you stop thinking geometrically, you stop thinking about the meaning.

