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Abstract

After a quick presentation of the theory of Lie systems from a geometric perspective,
recent progresses on their applications when compatible geometric structures exist
will be described with an special emphasis in the particular case of admissible Kähler
structures, and therefore with applications in Quantum Mechanics. The more general
cases of quasi-Lie systems and bundle Lie systems will also be presented.
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Lie–Scheffers systems: a quick review

Lie–Scheffers systems = Non-autonomous systems of first-order differential equations
admitting a ...

Superposition rule: a function Φ : Rn(m+1) → R, x = Φ(u1, . . . , um; k1, . . . , kn),
ua ∈ Rn, such that the general solution is

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn) ,

with {x(a)(t) | a = 1, . . . ,m} being a generic set of particular solutions of the system
and where k1, . . . , kn are real numbers.

They are a generalisation of linear superposition rules for homogeneous linear systems
for which m = n and x = Φ(x(1), . . . , x(n); k1, . . . , kn) = k1 x(1) + · · ·+ kn x(n) but

i) The number m may be different from the dimension n.

ii) The function Φ is nonlinear in this more general case.
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They appear quite often in many different branches of science ranging from pure
mathematics to classical and quantum physics, control theory, economy, etc. For-
gotten for a long time they had a revival due to the work of Winternitz and coworkers.

One particular example is Riccati equation, of a fundamental importance in physics
(for instance factorisation of second order differential operators, Darboux transfor-
mations and in general Supersymmetry in Quantum Mechanics) and in mathematics.

These systems are related with equations in Lie groups and in general connections in
fibre bundles.

In the solution of such non-autonomous systems of first-order differential equations
we can use techniques imported form group theory, for instance Wei–Norman method,
and reduction techniques coming from the theory of connections.

Recent generalisations have also been shown to be useful for dealing with other
systems of differential equations (e.g. Emden–Fowler equations, Abel equations).

The existence of additional compatible geometric structures, like symplectic or Pois-
son structures may be useful in the search for solutions.
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Lie–Scheffers theorem

Theorem: Given a non-autonomous system of n first order differential equa-
tions

dxi

dt
= Xi(x1, . . . , xn, t), i = 1 . . . , n,

a necessary and sufficient condition for the existence of a function Φ : Rn(m+1) →
Rn, x = Φ(u1, . . . , um; k1, . . . , kn), ua ∈ Rn, such that the general solution is

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn) ,

with {x(a)(t) | a = 1, . . . ,m} being a set of particular solutions of the system and
where k1, . . . , kn, are n arbitrary constants, is that the system can be written as

dxi

dt
= b1(t)ξi1(x) + · · ·+ br(t)ξ

i
r(x), i = 1 . . . , n,

where b1, . . . , br, are r functions depending only on t and ξiα, α = 1, . . . , r, are
functions of x = (x1, . . . , xn), such that the r vector fields in Rn given by

Xα ≡
n∑
i=1

ξiα(x1, . . . , xn)
∂

∂xi
, α = 1, . . . , r,
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close on a real finite-dimensional Lie algebra, i.e. the Xα are l.i. and there are
r3 real numbers, cαβ γ , such that

[Xα, Xβ ] =

r∑
γ=1

cαβ
γXγ .

The number r satisfies r ≤ mn.

The geometric concept of superposition rule is the following:

A superposition rule for a t-dependent vector field X in a n-dimensional manifold
M is a map Φ : Mm ×M → M such that if {x(1)(t), . . . , x(m)(t)} is a generic set
of integral curves of X, then x(t) = Φ(x(1)(t), . . . , x(m)(t), k), with k ∈ M is also
integral curve of X, and each integral curve is obtained in this way.

The result of the Theorem in modern terms is that a t-dependent vector field X

admits a superposition rule if there exist r fields X1, . . . , Xr in M and functions
b1(t), . . . , br(t) such that X(x, t) be a linear combination

X(x, t) =
r∑

α=1

bα(t)Xα(x).

The t-dependent vector field can be seen as a family of vector fields {Xt | t ∈ R}.
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Definition. The minimal Lie algebra of a given a t-dependent vector field X on
a manifold M is the smallest real Lie algebra, V X , containing the vector fields
{Xt}t∈R, namely V X = Lie({Xt | t ∈ R}).

Definition. The vector field associated to a non-autonomous system X allows
us to define a generalised distribution DX : x ∈ M 7→ DXx ⊂ TM , where Dx =

{Yx | Y ∈ V X} ⊂ TxM , and X also gives rise to a generalised co-distribution
V : x ∈M 7→ Vx ⊂ T ∗M , where Vx = {ωx | ωx(Yx) = 0,∀Yx ∈ DXx }.

Remark that the Lie–Scheffers theorem can be reformulated as follows:

Theorem: A system X admits a superposition rule if and only if the minimal
Lie algebra V X is finite-dimensional.

Definition. A function f : U ⊂ UX → R is a local first integral (or t-
independent constant of the motion) for a given t-dependent vector field X over
Rn if Xf = 0

Then f is a first integral if and only if df ∈ VX |U .

One can easily prove that:
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Property. Given a t-dependent vector field X on a n-dimensional manifold
M and a point x ∈ UX where the rank of DX is equal to k, the associated
co-distribution VX admits, in a neighbourhood of x, a local basis of the form,
df1, . . . , dfn−k, where, f1, . . . , fn−k, is a family of fist integrals of X. Additionally,
the space IX |U of first-integrals of the system X over an open U of M , can be
put in the form

IX |U = {g ∈ C∞(U) | ∃F : U ⊂ Rn−k → R, g = F (f1, . . . , fn−k)}.

There exist different procedures to derive superposition rules for Lie systems. We
can use a method based on the diagonal prolongation notion.

Definition. Given a t-dependent vector field X over M , its diagonal prolonga-
tion to Mm+1 is the t-dependent vector field X̃ over Mm+1 such that

��� X̃ projects onto X by the map pr : (x(0), . . . , x(m)) ∈ Mm+1 7→ x(0) ∈ M ,
that is, pr∗X̃ = X.

��� X̃ is invariant under permutation x(i) ↔ x(j), with i, j = 0, . . . ,m.
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The procedure to determine superposition rules described is:

i) Take a basis X1, . . . , Xr of the Vessiot–Guldberg Lie algebra V associated with
the Lie system.

ii) Choose the minimum integer m such that the diagonal prolongations to Mm of
the elements of the previous basis are linearly independent at a generic point.

ii) Obtain n common first-integrals for the diagonal prolongations, X̃1, . . . , X̃r, to
Mm+1 (for instance, by means of the method of characteristics).

iii) Obtain the expression of the variables of one of the spaces M only in terms of
the other variables of Mm+1 and the above mentioned n first-integrals.

The so obtained expressions give rise to a superposition rule in terms of any generic
family of m particular solutions and n constants corresponding to the possible values
of the derived first-integrals.
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Some particular examples

A) Inhomogeneous linear systems:

dxi

dt
=

n∑
j=1

Ai j(t)x
j +Bi(t) , i = 1, . . . , n.

The time-dependent vector field is

X =

n∑
i=1

 n∑
j=1

Ai j(t)x
j +Bi(t)

 ∂

∂xi
,

which is a linear combination with t-dependent coefficients,

X =

n∑
i,j=1

Ai j(t)Yij +

n∑
i=1

Bi(t)Yi ,

of the n2 + n vector fields

Yij = xj
∂

∂xi
, Yi =

∂

∂xi
, i, j = 1, . . . , n .
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These last vector fields have the following commutation relations:

[Yi, Yk] = 0 , [Yij , Yk] = −δkj Yi , ∀ i, j, k = 1, . . . , n .

• The set {Yi | i = 1, . . . , n} generates an Abelian ideal.

• The set {Yij | i, j = 1, . . . , n} generates a Lie subalgebra.

• The Vessiot Lie algebra is isomorphic to the (n2 + n)-dimensional Lie algebra of
the affine group.

In this case r = n2 + n and using the general theory one can see that m = n + 1

and the equality r = mn also follows.

The superposition function Φ : Rn(n+1) → Rn is:

x = Φ(u1, . . . , un+1; k1, . . . , kn) = u1 + k1(u2 − u1) + · · ·+ kn(un+1 − u1),

i.e. the general solution can be written in terms of n+ 1 generic solutions as:

Φ(x(1), . . . , x(n+1); k1, . . . , kn) = x(n+1)+k1(x(1)−x(n+1))+· · ·+kn(x(n)−x(n+1)).
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B) The Riccati equation (n = 1)

dx(t)

dt
= a2(t)x2(t) + a1(t)x(t) + a0(t) .

Now m = r = 3 and the superposition principle comes from the relation

x− x1

x− x2
:
x3 − x1

x3 − x2
= k ,

or in other words,

x(t) =
x1(t)(x3(t)− x2(t)) + k x2(t)(x1(t)− x3(t))

(x3(t)− x2(t)) + k (x1(t)− x3(t))
.

i.e. the superposition rule involves three different solutions, m = 3. The value
k =∞ must be accepted, otherwise we do not obtain the solution x2.

The vector fields Y (1), Y (2) and Y (3) are given by

Y (1) =
∂

∂x
, Y (2) = x

∂

∂x
, Y (3) = x2 ∂

∂x
,

that close on a three-dimensional real Lie algebra, i.e. r = 3, with defining relations

[Y (1), Y (2)] = Y (1) , [Y (1), Y (3)] = 2Y (2) , [Y (2), Y (3)] = Y (3) .

Then, the associated Lie algebra is sl(2,R).
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C) Lie–Scheffers systems on Lie groups

M is a Lie group G. Consider a basis of either left–invariant (or right–invariant)
vector fields Xα in G as corresponding to the Lie algebra g of G or its opposite
algebra.

If {a1, . . . , ar} is a basis for the tangent space TeG and XR
α denotes the right-

invariant vector field in G such that XR
α (e) = aα, a Lie–Scheffers system is

ġ(t) = −
r∑

α=1

bα(t)XR
α (g(t)) .

When applying (Rg(t)−1)∗g(t) to both sides we obtain the equation on TeG

(Rg(t)−1)∗g(t)(ġ(t)) = −
r∑

α=1

bα(t)aα , (∗∗)

This is usually written with a slight abuse of notation:

(ġ g−1)(t) = −
r∑

α=1

bα(t)aα .

Such equation is right-invariant. Then,
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If ḡ(t) is a solution of (**) with initial condition ḡ(0) = e, the solution g(t) with
initial conditions g(0) = g0 is given by ḡ(t)g0.

Moreover, there is a superposition rule Φ : G×G→ G involving one solution

Φ(g, g0) = g g0.

This example is very useful because there are many other examples related with them
as explained next.

The motivation for the choice of the minus sign on the right hand side will be clear
shortly.
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D) Lie-Scheffers systems on homogeneous spaces for Lie groups

Let H be a closed subgroup of G and consider the homogeneous space M = G/H.
The right–invariant vector fields XR

α are τ -projectable and the τ -related vector fields
in M are the fundamental vector fields −Xα = −Xaα corresponding to the natural
left action of G on M .

τ∗gX
R
α (g) = −Xα(gH) ,

and we will have an associated Lie–Scheffers system on M :

X(x, t) =

r∑
α=1

bα(t)Xα(x) .

Therefore, a solution of this last system starting from x0 will be:

x(t) = Φ(g(t), x0) ,

with g(t) being a solution of (**).

The converse property is true: Given a Lie Scheffers system defined by complete
vector fields with associated Lie algebra g, we can see these as fundamental vector
fields relative to an action which can be found by integrating the vector fields.
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Wei-Norman method

Let G be a r–dimensional Lie group and {a1, . . . , ar} a basis of TeG, consider the
equation determining the curves g(t) ∈ G such that

ġ(t) g(t)−1 = a(t) = −
r∑

α=1

bα(t)aα ∈ TeG ,

with g(0) = e ∈ G.

In order to solve directly such equation we can use a method which is a generalisation
of the one proposed by Wei and Norman for finding the time evolution operator for
a linear systems of type

dU(t)

dt
= H(t)U(t) ,

with U(0) = I.

Remark that there exist alternative methods for solving the equation by reducing the
problem to a simpler one.
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Property: If g(t), g1(t) and g2(t) are differentiable curves in G such that g(t) =

g1(t)g2(t), ∀t ∈ R, then,

Rg(t)−1 ∗g(t)(ġ(t)) = Rg1(t)−1 ∗g1(t)(ġ1(t))

+ Ad (g1(t))
{
Rg2(t)−1 ∗g2(t)(ġ2(t))

}
.

The generalisation to several factors is as follows:

If g(t) = g1(t)g2(t) · · · gl(t) =
∏l
i=1 gi(t), then we have:

Rg(t)−1 ∗g(t)(ġ(t)) =

l∑
i=1

∏
j<i

Ad (gj(t))

{Rgi(t)−1 ∗gi(t)(ġi(t))
}
,

where it has been taken g0(t) = e for all t.

The generalized Wei–Norman method consists on writing g(t) in terms of its second
kind canonical coordinates,

g(t) =

r∏
α=1

exp(−vα(t)aα) = exp(−v1(t)a1) · · · exp(−vr(t)ar) ,

and transforming the equation into a differential equation system for the vα(t), with
initial conditions vα(0) = 0 for all α = 1, . . . , r.
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Then, using the expression of the above property, with l = r = dimG and gα(t) =

exp(−vα(t)aα) for all α, we see that

Rg(t)−1 ∗g(t)(ġ(t)) = −
r∑

α=1

v̇α

(∏
β<α Ad (exp(−vβ(t)aβ))

)
aα

= −
r∑

α=1

v̇α

(∏
β<α exp(−vβ(t)Ad (aβ))

)
aα .

Then, the fundamental expression of the Wei–Norman method is:

r∑
α=1

v̇α

∏
β<α

exp(−vβ(t)Ad (aβ))

 aα =

r∑
α=1

bα(t)aα ,

with vα(0) = 0, α = 1, . . . , r.

The resulting system of differential equations for the functions vα(t) is integrable by
quadratures if the Lie algebra is solvable, and in particular, for nilpotent Lie algebras.
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The reduction method

Given an equation on a Lie group

ġ(t) g(t)−1 = a(t) = −
r∑

α=1

bα(t) aα ∈ TeG , (•)

with g(0) = e ∈ G, it may happen that the only nonvanishing coefficients are those
corresponding to a subalgebra h of g. Then the equation reduces to a simpler equation
on a subgroup, involving less coordinates.

The fundamental result is that if we know a particular solution of the problem asso-
ciated in a homogeneous space, the original solution reduces to one on the subgroup.

Let us choose a curve g′(t) in the group G, and define the curve g(t) by g(t) =

g′(t)g(t). The new curve in G, g(t), determines a new Lie system.
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Indeed,

Rg(t)−1∗g(t)(ġ(t)) = Rg′ −1(t)∗g′(t)(ġ
′(t))−

r∑
α=1

bα(t)Ad (g′(t))aα ,

which is an equation similar to the original one but with a different right hand side.

In this way we can define an action of the group of curves in the Lie group G on the
set of Lie systems on the group. This can be used to reduce a given Lie system to a
simpler one.

The aim is to choose the curve g′(t) in such a way that the new equation be simpler.
For instance, we can choose a subgroup H and look for a choice of g′(t) such that
the right hand side lies in TeH, and hence g(t) ∈ H for all t.

If Ψ : G ×M → M is a transitive action of G on a homogeneous space M , which
can be identified with the set G/H of left-cosets, by choosing a fixed point x0, then
the integral curves starting from the point x0 associated to both Lie systems are
related by

x(t) = Ψ(g(t), x0) = Ψ(g′(t)g(t), x0) = Ψ(g′(t), x(t)) .
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Therefore, this gives an action of the group of curves in G on the set of associated
Lie systems in homogeneous space s.

More explicitly, if we consider ta curve g′(t) in the group, the Lie system transforms
into a new one

˙̄x =

r∑
α=1

b̄α(t)Xα(x̄) ,

in which
b̄ = Ad (g′(t))b(t) + ġ′ g′−1 .

The important result is that the knowledge of a particular solution of the associated
Lie system in G/H allows us to reduce the problem to one in the subgroup H.

Theorem: Each solution of (•) on the group G can be written in the form
g(t) = g1(t)h(t), where g1(t) is a curve on G projecting onto a solution g̃1(t)

for the left action λ on the homogeneous space G/H and h(t) is a solution of an
equation but for the subgroup H, given explicitly by

(ḣ h−1)(t) = −Ad (g−1
1 (t))

(
r∑

α=1

bα(t)aα + (ġ1 g
−1
1 )(t)

)
∈ TeH .
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The SODE Lie systems

A system of second order differential equations

ẍi = f i(t, x, ẋ) , i = 1, . . . , n,

can be studied through the corresponding system of first order differential equations
dxi

dt
= vi

dvi

dt
= f i(t, x, v)

with associated t-dependent vector field

X = vi
∂

∂xi
+ f i(t, x, v)

∂

∂vi

We call SODE Lie systems those for which X is a Lie system, i.e. it can be written
as a linear combination with t-dependent coefficients of vector fields closing a finite-
dimensional real Lie algebra.
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Examples

A) The 1-dim harmonic oscillator with time-dependent frequency

The equation of motion is
ẍ = −ω2(t)x

with associated system {
ẋ = v
v̇ = −ω2(t)x

and vector field
X = v

∂

∂x
− ω2(t)x

∂

∂v
,

which is a linear combination X = X1 − ω2(t)X2 with

X1 = v
∂

∂x
, X2 = x

∂

∂v

such that if
X3 =

1

2

(
v
∂

∂v
− x ∂

∂x

)
.

then
[X1, X2] = 2X3 , [X1, X3] = −X1 , [X2, X3] = X2 ,

a Lie algebra isomorphic to sl(2,R). This system has no first integrals.
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B) The 2-dim isotropic harmonic oscillator with time-dependent fre-
quency

The equation of motion is {
ẍ1 = −ω2(t)x1

ẍ2 = −ω2(t)x2

with associated system 
ẋ1 = v1

v̇1 = −ω2(t)x1

ẋ2 = v2

v̇2 = −ω2(t)x2

and the t-dependent vector field

X = v1
∂

∂x1
− ω2(t)x1

∂

∂v1
+ v2

∂

∂x2
− ω2(t)x2

∂

∂v2
,

is a linear combination X = X1 − ω2(t)X2 with

X1 = v1
∂

∂x1
+ v2

∂

∂x2
, X2 = x1

∂

∂v1
+ x2

∂

∂v2
,

such that if
X3 =

1

2

(
v1

∂

∂v1
− x1

∂

∂x1
+ v2

∂

∂v2
− x2

∂

∂x2

)
.
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then
[X1, X2] = 2X3 , [X1, X3] = −X1 , [X2, X3] = X2 ,

once again a Lie algebra isomorphic to sl(2,R).

The system admits an invariant because, if F is given by F (x1, x2, v1, v2), then
X1F = 0 shows that there exists a function F̄ (ξ, v1, v2) with ξ = x1v2− x2v1, such
that F (x1, x2, v1, v2) = F̄ (ξ, v1, v2) while the second condition

x1
∂F̄

∂v1
+ x2

∂F̄

∂v2
= 0

i.e. we obtain the first integral

F = x1v2 − x2v1

which can be seen as a partial superposition rule.
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With three copies of the same harmonic oscillator, the vector fields X1 and X2 are

X1 = v1
∂

∂x1
+ v2

∂

∂x2
+ v

∂

∂x
, X2 = x1

∂

∂v1
+ x2

∂

∂v2
+ x

∂

∂v
,

which determine the first integrals F as solutions of X1F = X2F = 0. The
condition X1F = 0 says that there exists a function F̄ : R5 → R2 such that
F (x1, x2, x, v1, v2, v) = F̄ (ξ1, ξ2, v1, v2, v) with ψ1(x1, x2, x, v1, v2, v) = xv1 − x1v

and ψ2(x1, x2, x, v1, v2, v) = xv2−x2v, and the condition X2F = 0 transforms into

x1
∂F̄

∂v1
+ x2

∂F̄

∂v2
+ x

∂F̄

∂v

i.e. ξ1 and ξ2 are first integrals. They produce a superposition rule, because{
xv2 − x2v = k1

x1v − v1x = k2

from where we obtain the expected superposition rule:

x = k1 x1 + k2 x2 , v = C1 v1 + C2 v2 , Ci =
ki

x1v2 − x2v1
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C) Pinney equation:

The Pinney equation is the following second order non-linear differential equation:

ẍ = −ω2(t)x+
k

x3
,

where k is a constant. The corresponding system of first order differential eqs is{
ẋ = v

v̇ = −ω2(t)x+
k

x3

and the associated t-dependent vector field

X = v
∂

∂x
+

(
−ω2(t)x+

k

x3

)
∂

∂v
.

This is a Lie system because it can be written as

X = L2 − ω2(t)L1 ,

where:
L1 := x

∂

∂v
, L2 =

k

x3

∂

∂v
+ v

∂

∂x
.
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The vector fields L1 and L2 span a three-dimensional real Lie algebra g with nonzero
defining relations:

[L1, L2] = 2L3, [L3, L2] = −L2, [L3, L1] = L1

where
L3 =

1

2

(
x
∂

∂x
− v ∂

∂v

)
,

which is isomorphic to sl(2,R).

The fact that they have the same associated Lie algebra means that they can be
solved simultaneously in the group SL(2,R) by the equation

ġ g−1 = ω2(t) a1 − a2

Note that this isotonic oscillator shares with the harmonic one the property of having
a period independent of the energy, i.e. they are isochronous, and in the quantum
case they have a equispaced spectrum.
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D) Ermakov system

Consider the system 
ẋ = vx
v̇x = −ω2(t)x
ẏ = vy

v̇y = −ω2(t)y +
1

y3

with associated vector field

X = vx
∂

∂x
+ vy

∂

∂y
− ω2(t)x

∂

∂vx
+

(
−ω2(t)y +

1

y3

)
∂

∂vy
,

which is a linear combination with time-dependent coefficients of the vector fields,
X = −ω2(t)X1 +X2, of the vector fields

X1 = x
∂

∂vx
+ y

∂

∂vy
, X2 = vx

∂

∂x
+ vy

∂

∂y
+

1

y3

∂

∂vy
.

This system is made up by two Lie systems closing on a sl(2,R) algebra.

The second subsystem of first order differential equations is usually called Pinney
equation. The generators of the Lie system with algebra sl(2,R) span a distribution
of dimension two and there is no first integral of the motion for such subsystem.
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By adding the other sl(2,R) linear Lie system, the h.o. with time dependent angular
frequency, as the distribution in the four-dimensional space is of rank three there is
an integral of motion.

The first integral can be obtained from X1F = X2F = 0. But X1F means that
F (x, y, vx, vy) = F̄ (x, y, ξ) with ξ = xvy − yvx, and then X2F = 0 is written

vx
∂F̄

∂x
+ vx

∂F̄

∂x
+

x

y3

∂F̄

∂ξ

and the associated characteristics system we obtain

x dy − y dx
ξ

=
y3 dξ

x
=⇒ d(x/y)

ξ
+
y dξ

x
= 0

from where and the following first integral is found:

ψ(x, y, vx, vy) =

(
x

y

)2

+ ξ2 =

(
x

y

)2

+ (xvy − yvx)2

which is the well-known Ermakov invariant.
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E) Generalized Ermakov system

It is the system given by:
ẍ =

1

x3
f(y/x)− ω2(t)x

ÿ =
1

y3
g(y/x)− ω2(t)y

In the particular case f(u) = 0 and g(u) = 1 reduces to the Ermakov system.

This system can be written as a first order one by doubling the number of degrees
of freedom by introducing the new variables vx and vy:

ẋ = vx

v̇x = −ω2(t)x+
1

x3
f(y/x)

ẏ = vy

v̇y = −ω2(t)y +
1

y3
g(y/x)

which determines the integral curves of the vector field

X = vx
∂

∂x
+vy

∂

∂vy
+

(
−ω2(t)x+

1

x3
f(y/x)

)
∂

∂vx
+

(
−ω2(t)y +

1

y3
g(y/x)

)
∂

∂vy
.
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Such vector field can be written as a linear combination

X = N2 − ω2(t)N1

where N1 and N2 are the vector fields

N1 = x
∂

∂vx
+ y

∂

∂vy
, N2 = vx

∂

∂x
+

1

x3
f(y/x)

∂

∂vx
+ vy

∂

∂y
+

1

y3
g(y/x)

∂

∂vy
,

Note that these vector fields generate a three-dimensional real Lie algebra with a
third generator

N3 =
1

2

(
x
∂

∂x
− vx

∂

∂vx
+ y

∂

∂y
− vy

∂

∂vy

)
.

In fact, as
[N1, N2] = 2N3, [N3, N1] = N1, [N3, N2] = −N2

they generate a Lie algebra isomorphic to sl(2,R). Therefore the system is a Lie
system.
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There exists a first integral for the motion, F : R4 → R, for any ω2(t), because this
Lie system has an associated integrable distribution of rank three and the manifold
is four-dimensional.

This first integral F satifies NiF = 0 for i = 1, . . . , 3, but as [N1, N2] = 2N3 it is
enough to impose N1F = N2F = 0. Then, if N1F = 0,

x
∂F

∂vx
+ y

∂F

∂vy
= 0 ,

and according to the method of characteristics we obtain:

dx

0
=
dy

0
=
dvx
x

=
dvy
y

and therefore there exists a function F̄ : R3 → R such that F (x, y, vx, vy) =

F̄ (x, y, ξ = xvy − yvx). The condition N2F = 0 reads now

vx
∂F̄

∂x
+ vy

∂F̄

∂y
+

(
− y

x3
f(y/x) +

x

y3
g(y/x)

)
∂F̄

∂ξ
.

We can therefore consider the associated system the characteristics are given by:

dx

vx
=
dy

vy
=

dξ

− y
x3 f(y/x) + x

y3 g(y/x)
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But using that
−y dx+ x dy

ξ
=
dx

vx
=
dy

vy

we arrive to
−y dx+ x dy

ξ
=

dξ

− y
x3 f( yx ) + x

y3 g( yx )

i.e.

−
y2d

(
x
y

)
ξ

=
dξ

− y
x3 f( yx ) + x

y3 g( yx )

and integrating we obtain the first integral

1

2
ξ2 +

∫ u [ 1

u3
f

(
1

u

)
+ u g

(
1

u

)]
du .

This first integral allows us to determine a solution of one subsystem in terms of a
solution of the other equation.
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F) The Pinney equation revisited

Consider the system of first order differential equations:

ẋ = vx
ẏ = vy
ż = vz
v̇x = −ω2(t)x

v̇y = −ω2(t)y +
k

y3

v̇z = −ω2(t)z

which corresponds to the vector field

X = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+

k

y3

∂

∂vy
− ω2(t)

(
x
∂

∂vx
+ y

∂

∂vy
+ z

∂

∂vz

)
X can be expressed as X = N2 − ω2(t)N1 where the vector fields N1 and N2 are:

N1 = y
∂

∂vy
+ x

∂

∂vx
+ z

∂

∂vz
, N2 = vy

∂

∂y
+

1

y3

∂

∂vy
+ vx

∂

∂x
+ vz

∂

∂z
,

These vector fields generate a three-dimensional real Lie algebra with the vector field
N3 given by

N3 =
1

2

(
x
∂

∂x
− vx

∂

∂vx
+ y

∂

∂y
− vy

∂

∂vy
+ z

∂

∂z
− vz

∂

∂vz

)
.
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In fact, as
[N1, N2] = 2N3, [N3, N1] = N1, [N3, N2] = −N2

they generate a Lie algebra isomorphic to sl(2,R). The system is a Lie system.

The distribution generated by these fundamental vector fields has rank three. Thus,
as the manifold of the Lie system is of dimension six we obtain three time-independent
integrals of motion.

��� The Ermakov invariant I1 of the subsystem involving variables x and y.

��� The Ermakov invariant I2 of the subsystem involving variables y and z

��� The Wronskian W of the subsystem involving variables x and z has

They define a foliation with three-dimensional leaves.

We can use this foliation for obtaining a superposition rule in terms of these three
first integrals.
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The Ermakov invariants read as:

I1 =
1

2

(
(yvx − xvy)2 + c

(
x

y

)2
)

I2 =
1

2

(
(yvz − zvy)2 + c

(
z

y

)2
)

and W is:
W = x1vvz − zvx

In terms of these three integrals we can obtain an explicit expression of y in terms
of x, z and the integrals I1, I2,W :

y =
2

W

(
I2x

2 + I1z
2 ±

√
4I1I2 − cw2xz

)1/2

This can be interpreted as saying that there is a superposition rule allowing us to
express the general solution of the Pinney equation in terms of two independent
solutions of the corresponding harmonic oscillator with time-dependent frequency
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Structure preserving Lie systems

There are particularly interesting cases in which the manifold M is endowed with
additional structures. For instance, let (M,Ω) be a symplectic manifold and the
vector fields arising in the expression of the t-dependent vector field describing a Lie
system are Hamiltonian vector fields closing on a real finite-dimensional Lie algebra.

These vector fields correspond to a symplectic action of the Lie group G on (M,Ω).

The Hamiltonian functions of such vector fields, defined by i(Xα)Ω = −dhα, do not
close on the same Lie algebra when the Poisson bracket is considered, but we can
only say that

d
(
{hα, hβ} − h[Xα,Xβ ]

)
= 0 ,

and then they span a Lie algebra extension of the original one.

The important fact is that we can define a t-dependent Hamiltonian

ht =
∑
α

bα(t)hα,
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with the functions hα closing a Lie algebra, in such a wat hat i(Xt)Ω = −dht.

As an example we can consider the differential equation of an n-dimensional
Winternitz–Smorodinsky oscillator of the form ẋi = pi,

ṗi = −ω2(t)xi +
k

x3
i

,
i = 1, . . . , n.

which describes the integral curves of the t-dependent vector field on T∗Rn

Xt =

n∑
i=1

[
pi

∂

∂xi
+

(
−ω2(t)xi +

k

x3
i

)
∂

∂pi

]
,

which can be written as Xt = X2 + ω2(t)X1 with X1, X2 and X3 = −[X1, X2]

being given by

X1 = −
n∑
i=1

xi
∂

∂pi
, X2 =

n∑
i=1

(
pi

∂

∂xi
+

k

x3
i

∂

∂pi

)
, X3 =

n∑
i=1

(
xi

∂

∂xi
− pi

∂

∂pi

)
.

Note that Xt is a Lie system, because X1, X2 and X3 close on a sl(2,R) algebra:

[X1, X2] = −X3, [X1, X3] = X1, [X2, X3] = −X2.
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Moreover, the preceding vector fields are Hamiltonian vector fields with respect to

the usual symplectic form ω0 =

n∑
i=1

dxi ∧ dpi with Hamiltonian functions

h1 =
1

2

n∑
i=1

x2
i , h2 =

1

2

n∑
i=1

(
p2
i +

k

x2
i

)
, h3 =

n∑
i=1

xipi,

which obey that

{h1, h2} = h3, {h1, h3} = −h1, {h2, h3} = h2.

Consequently, every curve ht that takes values in the Lie algebra (W, {·, ·}) spanned
by h1, h2 and h3 gives rise to a Lie system which is Hamiltonian in T∗Rn with respect
to the symplectic structure ω0 in such a way that the t-dependent vector field is given
by

Xt = X2 + ω2(t)X1 = ω̂−1
0 (dh2 + ω2(t)dh1),

i.e. the Hamiltonian is ht = h2 + ω2(t)h1.

We can go a step further and consider Lie systems in (may be degenerate) Poisson
manifolds.
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Definition. A Poisson manifold is a pair (M,Λ) where Λ is a bivector field
in the differentiable manifold M in such a way that [Λ,Λ]S.B. = 0. The bivector
field gives by contraction a map denoted Λ̂ such that

Λ̂(α)(β) = Λ(α, β)

In particular, if f1, f2 ∈ C∞(M), we define the Poisson bracket {f1, f2} by

{f1, f2} = Λ(df1, df2),

and this Poisson bracket satisfies Jacobi identity because of the vanishing of the
Schouten bracket condition

The Lie bracket over C∞(M) holds the Leibnitz rule

{fg, h} = {f, h}g + {g, h}f, ∀f, g, h ∈ C∞(M).

Consequently, the above Lie bracket becomes a derivation in each entry: given a
function f ∈ C∞(M), there exists a vector field Xf overM such that Xfg = {g, f}
for each g ∈ C∞(M), i.e. Xf = Λ̂(−df). T he vector field Xf is called the
Hamiltonian vector field associated with f . The Jacobi identity for the Poisson
structure entails that

X{f,g} = −[Xf , Xg], ∀f, g ∈ C∞(M).
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In other words, the mapping f 7→ Xf is a Lie algebra anti-homomorphism between
the Lie algebras (C∞(M), {·, ·}) and (Γ(τM ), [·, ·]).

Equivalently, Λ̂ ◦ d : C∞(M)→ XH(M,Λ) is a Lie algebra homomorphism.

Definition. The elements of the kernel of the previous homomorphism are called
Casimir functions. The set of such Casimir functions will be denoted C.

This can be summarising by saying that the following sequence is exact:

0 // C // C∞(M)
Λ̂◦d // XH(M,Λ) // 0

Definition. A Lie–Hamiltonian structure is a triple (M,Λ, h), where (M,Λ) is
a Poisson manifold and h is a t-parametrised family of functions ht : M → R
such that Lie({ht}t∈R) is a finite-dimensional real Lie algebra.

Definition. A t-dependent system X on M is said to admit a Lie–Hamilton
structure if there exists a Lie–Hamiltonian structure (M,Λ, h) such that Xt ∈
Λ̂(−dht), for every t ∈ R. The triple (M,Λ, X) is called a Lie–Hamilton triple.
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There is a generalisation to the framework of Dirac manifolds. Recall that a Pon-
tryagin bundle PN is a vector bundle TN ⊕N T ∗N on N , and that an almost-Dirac
manifold is a pair (N,L), where L is a maximally isotropic subbundle of PN with
respect to the pairing

〈Xx + αx, X̄x + ᾱx〉+ ≡
1

2
(ᾱx(Xx) + αx(X̄x)),

where Xx + αx, X̄x + ᾱx ∈ TxN ⊕ T ∗xN = PxN, i.e., L is isotropic and has rank
n = dimN .

A Dirac manifold is an almost-Dirac manifold (N,L) whose subbundle L, its Dirac
structure, is involutive relative to the Courant–Dorfman bracket, namely

[[X + α, X̄ + ᾱ]]C ≡ [X, X̄] + LX ᾱ− ιX̄dα ,

where X + α, X̄ + ᾱ ∈ Γ(TN ⊕N T ∗N).

A vector field X on N is said to be an L-Hamiltonian vector field¸ (or simply a
Hamiltonian vector field if L is fixed) if there exists an f ∈ C∞(N) such that
X+df ∈ Γ(L). In this case, f is an L-Hamiltonian function for X and an admissible
function of (N,L). Let us denote by Ham(N,L) and Adm(N,L) the spaces of
Hamiltonian vector fields and admissible functions of (N,L), respectively.
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The space Adm(N,L) becomes a Poisson algebra (Adm(N,L), q , {·, ·}L) relative
to the standard product of functions and the Lie bracket given by

{f, f̄}L = Xf̄ ,

where X is an L-Hamiltonian vector field for f .

Moreover, if X and X̄ are L-Hamiltonian vector fields with Hamiltonian functions f
and f̄ , then {f, f̄}L is a Hamiltonian for [X, X̄]:

[[X + df, X̄ + df̄ ]]C = [X, X̄] + LXdf̄ − ιX̄d2f = [X, X̄] + d{f, f̄}L.

One can proceed in a very a similar way to the case of Poisson manifolds

See e.g.

Dirac–Lie systems and Schwarzian equations, J. Diff. Eqns. 257, 2303–2340
(2014) (JFC, Janusz Grabowski, Javier de Lucas and Cristina Sardón)
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An example: Second order Riccati differential equation

The usual Riccati equation comes from reduction of a linear differential equation by
taking into account the invariance under dilations of such equations.

Starting from
A3

...
y +A2 ÿ +A1 ẏ +A0 y = 0

where we can assume that A3(t) > 0, and writing y = eu, with x = u̇ we arrive to

A3(ẍ+ 3xẋ+ x3) +A2(ẋ+ x2) +A1 x+A0 = 0,

and if we change the independent variable t to a new variable τ , then d/dt = τ̇ d/dτ ,
and if we denote x′ = dx/dτ , x′′ = d2x/dτ2, we obtain

ẋ = τ̇ x′, ẍ = τ̇
d

dτ

(
τ̇
dx

dτ

)
= τ̇2 x′′ +

τ̈

τ̇
x′

and therefore the original equation reduces to

A3

(
τ̇2 x′′ +

τ̈

τ̇
x′ + 3xτ̇ x′ + x3

)
+A2

(
τ̇x′ + x2

)
+A1 x+A0 = 0.
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If we choose τ such that A3 τ̇
2 = 1, and therefore

τ̇ = A
−1/2
3 =⇒ τ̈ = −1

2
A
−3/2
3 Ȧ3,

τ̈

τ̇
= −1

2
A−1

3 Ȧ3,

we find the equation

x′′ − 1

2
A−1

3 Ȧ3 x
′ + 3A

−1/2
3 xx′ +A3 x

3 +A2A
−1
3 x′ +A2 x

2 +A1 x+A0 = 0,

which can be rewritten in he form:

ẍ+ (b0(t) + b1(t)x)ẋ+ c0(t) + c1(t)x+ c2(t)x2 + c3(t)x3 = 0,

with

b1(t) = 3
√
A3(t), b0(t) =

A2(t)√
A3(t)

− Ȧ3(t)

2A3(t)
,

and is considered as the most general second orden Riccati equation.

It has been shown (JFC+ MF Rañada+M Santander, JMP 46, 062703 (2005)) that
such second-order Riccati equations admit a Lagrangian of the form:

L(t, x, v) =
1

v + U(t, x)
,

with U(t, x) = a0(t) + a1(t)x+ a2(t)x2.
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The corresponding t-dependent Hamiltonian obtained from the Legendre transfor-
mation

p =
∂L

∂v
= − 1

(v + U(t, x)2
=⇒ v =

1√
−p
− U(t, x),

i.e. the image is the open submanifold O = {(x, p) ∈ T∗xR | p < 0} and we can
define in O the Hamiltonian

h(t, x, p) = p

(
1√
−p
− U(t, x)

)
−
√
−p = −2

√
−p− pU(t, x).

Consequently, the Hamilton equations for h are
ẋ =

∂h

∂p
=

1√
−p
− U(t, x),

ṗ = −∂h
∂x

= p
∂U

∂x
(t, x).

which, taking into account the form of U(t, x) turn out to be
ẋ =

∂h

∂p
=

1√
−p
− a0(t)− a1(t)x− a2(t)x2,

ṗ = −∂h
∂x

= p(a1(t) + 2a2(t)x).
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This is a Lie system: In fact, consider the set of vector fields

X1 =
1√
−p

∂

∂x
, X2 =

∂

∂x
, X3 = x

∂

∂x
− p ∂

∂p
,

X4 = x2 ∂

∂x
− 2xp

∂

∂p
, X5 =

x√
−p

∂

∂x
+ 2
√
−p ∂

∂p
.

The time-dependent vector field describing the system is

X(t, x) = X1 − a0(t)X2 − a1(t)X3 − a2(t)X4,

and the vector fields close on the commutation relations

[X1, X2] = 0, [X1, X3] =
1

2
X1, [X1, X4] = X5, [X1, X5] = 0,

[X2, X3] = X2, [X2, X4] = 2X3, [X2, X5] = X1,

[X3, X4] = X4, [X3, X5] =
1

2
X5,

[X4, X5] = 0.

and then we see that it is a Lie system related to a Vessiot-Guldberg Lie algebra of
vector fields V .
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More specifically, the vector fields X1, . . . , X5 span a five dimensional Lie algebra of
vector fields V that is not solvable because [V, V ] = V .

Moreover, V is not a semisimple algebra. It admits an Abelian solvable ideal
V1 = 〈X1, X5〉), and V2 = 〈X2, X3, X4〉 is a Lie subalgebra isomorphic to sl(2,R).
Therefore V is a semidirect sum V1 ⊕s V2.

Consequently, the Lie algebra V gives rise to a Lie group of the form G = R2 C

SL(2,R), where C denotes the semidirect product of SL(2,R) by R2, and a Lie
group action Φ : G×O → O whose fundamental vector fields are those of V .

Indeed, it is a long, but straightforward computation, to show that

Φ

((
(λ1, λ2),

(
α β
γ δ

))
, (x, p)

)
=

(
x̄− λ1

√
−p̄

1 + λ5(−p̄)−1/2
,−(
√
−p̄+ λ5)2

)
,

where
x̄ =

αx+ β

γx+ δ
, p̄ = p (δ + γx)

2
.
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This action enables us to put the general solution ξ(t) of the system of Hamilton
equations for the second order Riccati equation in the form ξ(t) = Φ(g(t), ξ0), where
g(t) is the solution of the equation

dg

dt
= −

5∑
α=1

bα(t)XR
α (g), g(0) = e,

on G, with the XR
α being a family of right-invariant vector fields over G such that

the XR
α (e) ∈ TeG close the same commutation relations as the Xα.

To be remarked that the vector fieldsXi here considered are Hamiltonian with respect
to the usual symplectic form in T∗R, their hamiltonians being respectively given by:

h1 = 2
√
−p, h2 = −p, h3 = −xp, h4 = −x2p,

and it turns out that their nonvanishing Poisson brackets are

{h1, h3} = 1
2h1, {h1, h4} = h5, {h1, h5} = 2, {h2, h3} = h2,

{h2, h4} = 2h3, {h2, h5} = h1, {h3, h4} = h4, {h3, h5} = 1
2h5

with h5 = 2x
√
−p. They close on a six-dimensional real Lie algebra with the function

h6 = 1. Moreover, it can be seen that the t-dependent system can be put into the
50



form Λ̂(−dht), where ht is a t-parametrized family of functions over O of the form
ht = h1− a0(t)h2− a1(t)h3− a2h4 and therefore the Lie system we are considering
is Hamiltonian

Finally, a superposition rule for the second order Riccati equation can be ob-
tained through the common first-integrals for the appropriated diagonal prolongations
X̂1, X̂2, X̂3, X̂4, X̂5 on a certain O(m) ⊂ T∗R(m) (i.e. such that their projections
π∗(X̂α), with α = 1, . . . , 5, are linearly independent at a generic point of T∗Rm).
In our case, it can be easily verified that m = 4. The resulting first-integrals, turn
out to be

∆1 = (x(2) − x(3))
√
p(2)p(3) + (x(3) − x(1))

√
p(3)p(1) + (x(1) − x(2))

√
p(2)p(1),

∆2 = (x(1) − x(2))
√
p(1)p(2) + (x(2) − x(0))

√
p(2)p(0) + (x(0) − x(1))

√
p(1)p(0),

∆3 = (x(1) − x(3))
√
p(1)p(3) + (x(3) − x(0))

√
p(3)p(0) + (x(0) − x(1))

√
p(1)p(0).

In order to obtain a superposition principle, we just need to obtain the value of p(0)

in terms of the remaining variables from one of the above integrals, e.g. ∆2, to get

p(0) =
∆2 + (x(2) − x(1))

√
p(1)p(2)

(x(2) − x(1))
√
p(2) + (x(0) − x(1))

√
p(1)

,
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and to plug this value in one of the others variables, e.g. ∆3, to have

x(0) = ∆3(
√
−p2x2−

√
−p1x1)+∆2(

√
−p1x1−

√
−p3x3)+∆1x1

√
−p1

∆3(
√
−p2−

√
−p1)+∆2(

√
−p1−

√
−p3)+

√
−p1k1

,

p(0) =
(∆1
√
−p1+∆3(

√
−p1−

√
−p2)+∆2(

√
−p1−

√
−p3))(∆2+

√
p1p2(x2−x1))

∆1
√
p2p1(x1−x2)+∆2

√
p2p3(x2−x3)+

√
p3p2(x3−x2)+∆1

.

The above expression gives us a superposition rule for second order Riccati differential
equation.

In addition, as its general solution, (x(0)(t), p(0)(t)), satisfies that x(0)(t) is the
general solution, the first part of the above expressions gives us the solution of second-
order Riccati equations in terms of three particular solutions x(1)(t), x(2)(t), x(3)(t),
their associated moments p(1)(t), p(2)(t), p(3)(t), and two constants ∆1,∆2

Note that once a family of particular solutions is chosen the constant ∆1 gets fixed.
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Geometric approach to Quantum Mechanics

The Schrödinger picture of Quantum mechanics admits a geometric interpretation
similar to that of classical mechanics.

A separable complex Hilbert space (H, 〈·, ·〉) can be considered as a real linear space,
to be then denoted HR. The norm in H defines a norm in HR, where ‖ψ‖R = ‖ψ‖C.

The linear real space HR is endowed with a natural symplectic structure as follows:

ω(ψ1, ψ2) = 2 Imag 〈ψ1, ψ2〉.

The Hilbert HR can be considered as a real manifold modelled by a Banach space
admitting a global chart.

The tangent space TφHR at any point φ ∈ HR can be identified with HR itself: the
isomorphism associates ψ ∈ HR with the vector ψ̇ ∈ TφHR given by:

ψ̇f(φ) :=

(
d

dt
f(φ+ tψ)

)
|t=0

, ∀f ∈ C∞(HR) .
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The real manifold can be endowed with a symplectic 2-form ω:

ωφ(ψ̇, ψ̇′) = 2 Imag 〈ψ,ψ′〉 .

One can see that the constant symplectic structure ω in HR, considered as a Banach
manifold, is exact, i.e., there exists a 1-form θ ∈

∧1
(HR) such that ω = −dθ. Such

a 1-form θ ∈
∧1

(H) is, for instance, the one defined by

θ(ψ1)[ψ̇2] = −Imag 〈ψ1, ψ2〉.

This shows that the geometric framework for usual Schrödinger picture is that of
symplectic mechanics, as in the classical case.

A continuous vector field in HR is a continuous map X : HR → HR. For instance
for each φ ∈ H, the constant vector field Xφ defined by

Xφ(ψ) = φ̇.

It is the generator of the one-parameter subgroup of transformations of HR given by

Φ(t, ψ) = ψ + t φ .
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As another particular example of vector field consider the vector field XA defined by
the C-linear map A : H → H, and in particular when A is skew-selfadjoint.

With the natural identification natural of THR ≈ HR ×HR, XA is given by

XA : φ 7→ (φ,Aφ) ∈ HR ×HR .

When A = I the vector field XI is the Liouville generator of dilations along the
fibres, ∆ = XI , usually denoted ∆ given by ∆(φ) = (φ, φ).

Given a selfadjoint operator A in H we can define a real function in HR by

a(φ) = 〈φ,Aφ〉 ,

i.e.,
a = 〈∆, XA〉 .

Then,

daφ(ψ) =
d

dt
a(φ+ tψ)t=0 =

d

dt
[〈φ+ tψ,A(φ+ tψ)〉]|t=0

= 2 Re 〈ψ,Aφ〉 = 2 Imag 〈−iAφ,ψ〉 = ω(−iAφ,ψ).

If we recall that the Hamiltonian vector field defined by the function a is such that
for each ψ ∈ TφH = H,

daφ(ψ) = ω(Xa(φ), ψ) ,
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we see that
Xa(φ) = −iAφ .

Therefore if A is the Hamiltonian H of a quantum system, the Schrödinger equation
describing time-evolution plays the rôle of ‘Hamilton equations’ for the Hamiltonian
dynamical system (H, ω, h), where h(φ) = 〈φ,Hφ〉: the integral curves of Xh satisfy

φ̇ = Xh(φ) = −iHφ .

The real functions a(φ) = 〈φ,Aφ〉 and b(φ) = 〈φ,Bφ〉 corresponding to two selfad-
joint operators A and B satisfy

{a, b}(φ) = −i 〈φ, [A,B]φ〉 ,

because

{a, b}(φ) = [ω(Xa, Xb)](φ) = ωφ(Xa(φ), Xb(φ)) = 2 Imag 〈Aφ,Bφ〉 ,

and taking into account that

2 Imag 〈Aφ,Bφ〉 = −i [〈Aφ,Bφ〉 − 〈Bφ,Aφ〉] = −i [〈φ,ABφ〉 − 〈φ,BAφ〉] ,

we find the above result.
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In particular, on the integral curves of the vector field Xh defined by a Hamiltonian
H,

ȧ(φ) = {a, h}(φ) = −i 〈φ, [A,H]φ〉 ,

what is usually known as Ehrenfest theorem:

d

dt
〈φ,Aφ〉 = −i 〈φ, [A,H]φ〉 .

There is another relevant symmetric (0, 2) tensor field which is given by the Real
part of the inner product. It endows HR with a Riemann structure and we have also
a complex structure J such that

g(v1, v2) = −ω(Jv1, v2), ω(v1, v2) = g(Jv1, v2),

together with

g(Jv1, Jv2) = g(v1, v2), ω(Jv1, Jv2) = ω(v1, v2) .

The triplet (g, J, ω) defines a Kähler structure in HR and the symmetry group of
the theory must be the unitary group U(H) whose elements preserve the inner prod-
uct, or in an alternative but equivalent way (in the finite-dimensional case), by the
intersection of the orthogonal group O(2n,R) and the symplectic group Sp(2n,R).
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The time evolution from time t0 to time t, even in the non-autonomous case, is
described in terms of the evolution operator U(t, t0):

ψ(t) = U(t, t0)ψ(t0)

It must be a symmetry of the theory, i.e. for each fixed t0, U(t, t0) is a curve in the
unitary group U(H).

Assume by simplicity that H is finite-dimensional, and then as

dU(t, t0)

dt
∈ TU(t,t0)U(H) =⇒ dU(t, t0)

dt
(U(t, t0))−1 ∈ TIU(H) ≈ u(H),

and therefore, there exists a curve H(t) in Herm(n,C) such that

dU(t, t0)

dt
= −iH(t)U(t, t0).

In this equation H(t) does not depend on t0 because of the relation

U(t, t0) = U(t, t1)U(t1, t0),

which implies
dU(t, t0)

dt
(U(t, t0))−1 =

dU(t, t1)

dt
(U(t, t1))−1
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This is a Lie system in the unitary group U(H) with associated Lie algebra u(H) in
the most general case. Sometimes however we can deal with some of its subalgebras.

Every curve H(t) in u(H) can be written as a linear combination of at most n2

elements, those of a basis of u(H), and therefore these (finite-dimensional) quantum
systems are Lie systems.

As the elements of the Vessiot-Guldberg Lie algebra are skew-Hermitians, all of them
define simultaneously Hamiltonian vector fields and Killing vector fields, and the
system is a Lie-Kähler system.

As an example consider a Hamiltonian operator H(t) that can be written as a lin-
ear combination, with some t-dependent real coefficients b1(t), . . . , br(t), of some
Hermitian operators,

H(t) =

r∑
k=1

bk(t)Hk ,

where the Hk form a basis of a real finite-dimensional Lie algebra V relative to
the Lie bracket of observables, i.e. [Hj , Hk] =

∑r
l=1 i cjklHl, with cjkl ∈ R and

j, k, l = 1, . . . , r.
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It determines a t-dependent Schrödinger equation

dψ

dt
= −iH(t)ψ = −i

r∑
k=1

bk(t)Hkψ.

The vector fields Xk such that Xk(ψ) = −iHk ψ are such that the t-dependent
vector vector field X corresponding to the equation is X =

∑r
k=1 bk(t)Xk and

[Xj , Xk] = −
r∑
l=1

cjklXl, j, k = 1, . . . , r.

As an instance, if H = C2, the time evolution is described by a curve −iH(t) :=

U̇tU
−1
t in the Lie algebra u(2) of U(2). Using the basis

I0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

and denoting S = (σ1, σ2, σ3)/2 and B := (B1, B2, B3), the Hamiltonian can be
written as

H(t) := B0(t)I0 + B(t) · S.
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Using the identification of C2 with R4, the Schrödinger equation is
q̇1
ṗ1
q̇2
ṗ2

=
1

2


0 2B0(t) +B3(t) −B2(t) B1(t)

−2B0(t)−B3(t) 0 −B1(t) −B2(t)
B2(t) B1(t) 0 2B0(t)−B3(t)
−B1(t) B2(t) B3(t)− 2B0(t) 0




q1
p1
q2
p2

 .

while the vector fields are now

X0 = −Γ = p1
∂
∂q1
− q1

∂
∂p1

+ p2
∂
∂q2
− q2

∂
∂p2

,

X1 = 1
2

(
p2

∂
∂q1
− q2

∂
∂p1

+ p1
∂
∂q2
− q1

∂
∂p2

)
,

X2 = 1
2

(
−q2

∂
∂q1
− p2

∂
∂p1

+ q1
∂
∂q2

+ p1
∂
∂p2

)
,

X3 = 1
2

(
p1

∂
∂q1
− q1

∂
∂p1
− p2

∂
∂q2

+ q2
∂
∂p2

)
satisfying

[X0, ·] = 0, [X1, X2] = −X3, [X2, X3] = −X1, [X3, X1] = −X2.
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The vector fields X0, X1, X2, X3 are Hamiltonian with Hamiltonian functions given
by

h0(ψ) = 1
2 〈ψ,ψ〉 = 1

2 (q2
1 + p2

1 + q2
2 + p2

2),

h1(ψ) = 1
2 〈ψ, S1ψ〉 = 1

2 (q1q2 + p1p2),

h2(ψ) = 1
2 〈ψ, S2ψ〉 = 1

2 (q1p2 − p1q2),

h3(ψ) = 1
2 〈ψ, S3ψ〉 = 1

4 (q2
1 + p2

1 − q2
2 − p2

2).

h1, h2, h3 are functionally independent, but h2
0 = 4(h2

1 + h2
2 + h2

3).

When H is not finite-dimensional Lie system theory applies when the t-dependent
Hamiltonian can be written as a linear combination with t-dependent coefficients of
Hamiltonians Hi closing on, under the commutator bracket, a real finite-dimensional
Lie algebra.

Note however that this Lie algebra does not necessarily coincide with the correspond-
ing classical one, but it is a Lie algebra extension.

62



On the other hand, as the fundamental concept for measurements is the expectation
value of observables, two vector fields such that

〈ψ2, Aψ2〉
〈ψ2, ψ2〉

=
〈ψ1, Aψ1〉
〈ψ1, ψ1〉

, ∀A ∈ Her(H)

should be considered as indistinguishable.

This is only possible when ψ2 is proportional to ψ1, and therefore we must consider
rays rather than vectors the elements describing the quantum states.

The space of states is not Cn but the projective space CPn−1.

It is possible to define a Kähler structure on CPn−1 and therefore to study Lie-Kähler
systems leading to superposition rules and to study time evolution in this projective
space.
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