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For a Hermitian matrix X ∈ Herm(n,C), the classical spectral theorem
says that the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are real and the
corresponding eigenspaces orthogonal.

The unitary group U(n) acts on Herm(n,C) by the transformations
X 7→ uXu∗ (u ∈ U(n)).
Let OA denote the orbit of the matrix A = diag(a1, . . . , an) with
a1 ≤ · · · ≤ an:

OA = {X = uAu∗ | u ∈ U(n)}.

By the spectral theorem

OA =
{

X ∈ Herm(n,C) | spectrum(X ) = {a1, . . . , an}
}
.
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Let p be the projection of Herm(n,C) onto Herm(n − 1,C) which maps
the matrix X to the (n − 1)× (n − 1) upper left corner Y of X .

X = (xij), Y =


x11 . . . x1,n−1 0

...
...

...
xn−1,1 . . . xn−1,n−1 0

0 . . . 0 0

 .

Theorem of Rayleigh

The eigenvalues µ1 ≤ · · · ≤ µn−1 of the matrix Y = p(X )
interlace the sequence of the eigenvalues of X :

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn.

This relation will be written µ � λ.
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Sketch of the proof

One computes the rational function

f (z) =
(
(zIn − X )−1en | en

)
in two different ways

f (z) =
detn−1(zIn−1 − Y )

detn(zIn − X )
=

∏n−1
j=1 (z − µj)∏n
i=1(z − λi )

=
n∑

i=1

wi

z − λi
.

The poles are the λi , the zeros are the µi . The residues wi are > 0, and

n∑
i=1

wi = 1.

The function f is decreasing form +∞ to −∞ in each interval ]λi , λi+1[.
Hence f vanishes at one and only one point µi in ]λi , λi+1[.
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Consider the map

Λ(n) : Herm(n,C)→ (Rn)+ = {t ∈ Rn | t1 ≤ · · · ≤ tn}
X 7→ (λ1, . . . , λn)

One proves more precisely

Λ(n)(OA) = {µ ∈ (Rn−1)+ | µ � a}.
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Orbital measure

The orbit OA carries a natural probability measure, the orbital measure
µA, image under the map u 7→ uAu∗ of the normalized Haar measure αn

of the compact group U(n).∫
Herm(n,C)

f (X )µA(dX ) =

∫
U(n)

f (uAu∗)αn(du).

We will describe the projection p(µA) of this orbital measure.
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Radial part of an invariant measure
Let µ be a measure on the space Herm(n,C) which is invariant under the
transformations X 7→ uXu∗ (u ∈ U(n)). Such a measure µ can be written∫

Herm(n,C)
f (X )µ(dX ) =

=

∫
(Rn)+

(∫
U(n)

f (udiag(t1, . . . , tn)u∗)αn(du)
)
ν(dt).

((Rn)+ = {t ∈ Rn | t1 ≤ · · · ≤ tn}).
The measure ν is called the radial part of µ.
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Baryshnikov formula

Let νA be the radial part of the projection p(µA).∫
(Rn−1)+

f (t)νA(dt) =

(n − 1)!

Vn(a)

∫ a2

a1

dt1

∫ a3

a2

dt2 . . .

∫ an

an−1

dtn−1Vn−1(t)f (t).

Vn(a) is the Vandermonde polynomial:

Vn(a) =
∏
i<j

(aj − ai ).

Observe that, according to the theorem of Rayleigh,

Support(νA) = {t ∈ Rn−1 | t � a}.
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Sketch of the proof by Olshanski

Fourier-Laplace transform of a bounded measure µ on Herm(n,C): for
Z ∈ Herm(n,C),

µ̂(Z ) =

∫
Herm(n,C)

etr(ZX )µ(dX ).

If µ is U(n)-invariant, then µ̂ is U(n)-invariant,
and only depends on the eigenvalues z1, . . . , zn of Z .
The Fourier-Laplace transform of the projection p(µ) onto
Herm(n − 1,C) is equal to the restriction to Herm(n − 1,C) of the
Fourier-Laplace transform of µ.
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Fourier-Laplace transform of the orbital measure µA:

µ̂A(Z ) =

∫
Herm(n,C)

etr ZXµ′AdX )

=

∫
U(n)

etr (ZuAu∗)αn(du).

(αn is the normalized Haar measure on U(n).)
There is an explicit formula:

Harish-Chandra-Itzykson-Zuber integral

For Z = diag(z1, . . . , zn),

µ̂A(Z ) = δn!
1

Vn(a)Vn(z)
det(eai zj )1≤i,j≤n.

δn = (n − 1, n − 2, . . . , 1, 0), δn! = (n − 1)!(n − 2)! . . . 1!
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Restrict to Herm(n − 1,C) amounts to taking zn = 0: for
Z = diag(z1, . . . , zn−1, 0),

µ̂A(Z ) = (−1)n−1(n − 1)!
δn−1!

Vn(a)Vn−1(z1, . . . , zn−1)

1

z1 . . . zn−1

×

∣∣∣∣∣∣∣∣∣
ea1z1 . . . ea1zn−1 1
ea2z1 . . . ea2zn−1 1

...
...

...
eanz1 . . . eanzn−1 1

∣∣∣∣∣∣∣∣∣ .
The result is obtained by some determinant transformations.
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More generally, for 1 ≤ k < n, consider the projection pn
k which maps

Herm(n,C) to Herm(k ,C).

A formula has been obtained by Olshanski for the radial part ν
(k)
A of the

projection pn
k (µA).

This a determinental formula involving spline functions.

It is possible to prove Olshanski ’s determinantal formula by using the
same scheme:

The Fourier-Laplace transform

of the projection µ
(k)
A is equal to the restriction of the Fourier-Laplace

transform of µA to the subspace Herm(k ,C).
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Restriction of functions defined by determinantal formulas

Let f1, . . . , fn be n analytic functions defined in a neighborhood of 0 in C,
and F the function defined by

F (z1, . . . , zn) =
1

Vn(z)
det
(
fj(zi )

)
1≤i,j≤n.

The function F , which is defined for zi 6= zj , extends as an analytic
function in a neighborhood of 0 in Cn.
The Harish-Chandra-Itzykson-Zuber formula involves a function of this
type, with

fj(z) = eajz .
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The following result is technical, but it is the key of our proof.

Theorem
For 0 ≤ k ≤ n − 1,

F (z1, . . . , zk , 0, . . . , 0) = C (n, k)
1

Vk(z1, . . . , zk)

1

(z1 . . . zk)n−k

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(z1) . . . fn(z1)
...

...
f1(zk) . . . fn(zk)

f
(n−k−1)
1 (0) . . . f

(n−k−1)
n (0)

...
...

f ′1 (0) . . . f ′n(0)
f1(0) . . . fn(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.



Orbital measures and spline functions

In particular, for k = 1, fi (z) = eai z ,

F (z1, 0, . . . , 0) = C (n, 1)
1

zn−1
1

∣∣∣∣∣∣∣∣∣∣∣

ea1z1 . . . eanz1

an−21 . . . an−2n
...

...
a1 . . . an
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.
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Splines

Given n knots a1 < a2 < · · · < an there is a unique function f on R such
that

- f (t) ≥ 0, supp(f ) = [a1, an],

- f is of class Cn−3,

- The restriction of f to each interval [ai , ai+1] is a polynomial
of degree ≤ n − 2.

-
∫
R f (t)dt = 1.

This function is denoted by Mn(a1, . . . , an; t), and called fundamental
spline function (or B-spline). The numbers are called the knots of the
spline function.
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From the classical Hermite-Genocchi formula one obtains a formula for
the Fourier-Laplace transform of the spline function

M̂n(a1, . . . , an; z) =

∫
R

eztMn(a1, . . . , an; t)dt

=
C

Vn(a1, . . . , an)

1

zn−1

∣∣∣∣∣∣∣∣∣∣∣

ea1z . . . eanz

an−21 . . . an−2n
...

...
a1 . . . an
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.
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We can now give a formula for the densité of the projection µ
(1)
A of the

orbital measure on Herm(1,C) ' R.

Theorem (Okounkov)

µ
(1)
A (dt) = Mn(a1, . . . , an)dt.

In fact we saw that both measures have the same Fourier-Laplace
transform.

Observe that the knots of the spline function are the eigenvalues of the
matrices in the orbit OA.
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A determinantal formula has been obtained for the radial part ν
(k)
A of the

projection µ
(k)
A of the orbital measure µA.

Theorem (Olshanski)

ν
(k)
A (dt) =

C (n, k)∏
j−i≥n−k+1(aj − ai )

det
(
Mn−k+1(aj , . . . , aj+n−k ; ti )

)
1≤i,j≤kVk(t)dt1 . . . dtk .

It can be proven by computing the Fourier-Laplace transform of both
sides. The original proof by Olshanski is slightly different.
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Olshanski’s formula generalizes in the following setting: Let U be a
compact simple Lie group, acting on its Lie algebra u by the adjoint
representation. There is an explicit formula, due to Harish-Chandra, for
the Fourier-Laplace transform of an orbital measure:
Harish-Chandra formula∫

U

e〈Ad(u)H,Z〉du = C

∑
w∈W det w e〈wH,Z〉

π(H)π(Z )
,

where
π(H) =

∏
α∈R+

〈α,H〉.

H and Z belongs to a Cartan subalgebra,
R+ is a set of positive roots,
W is the Weyl group.
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Projections of orbital measures have been considered by Zubov (2015) in
this setting.
In cases of the orthogonal group SO(n) and the symplectic group Sp(n),
one has to determine restrictions of functions of the following type

Dn(f , x , y) =
det
(
f (xiyj)

)
Vn(x2)Vn(y2)

,

for an even analytic function f .

Zubov has obtained determinantal formulas for the projections of orbital
measures.

As in the case of the action of the unitary group U(n) on the space
Herm(n,C), these formulas involve spline functions.
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In this setting determinantal processes have been studied by M.
Defosseux. She has obtained an analogue of the Baryshnikov formula
(2010).

For the action of the orthogonal group on the space of symmetric

matrices, much less is known. An explicit formula for the projection µ
(1)
A

has been obtained by F. Fourati (2011).
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Non compact analogues

We consider the action of the pseudo-orthogonal group U(p, q) on the
the space Herm(n,C) (p + q = n) by the transformations X 7→ uXu∗.
This action is equivalent to the adjoint action of U(p, q) on its Lie
algebra.
Let Ωn ⊂ Herm(n,C) be the cone of positive definite Hermitian matrices.
We will consider orbits contained in Ωn.
For X ∈ Herm(n,C), a number λ ∈ C will be said to be a pseudo
eigenvalue if there exists a nonzero vector v ∈ Cn such that

Xv = λIp,qv , Ip,q =

(
Ip 0
0 −Iq

)
.

(Or, equivalently, λ is an eigenvalue of Ip,qX .)
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For X ∈ Ωn, the pseudo eigenvalues are real, p pseudo eigenvalues are
positive, and q are negative.

Consider a diagonal matrix A ∈ Ωn with pseudo eigenvalues a1, . . . , an,

a1 > 0, . . . , ap > 0, ap+1 < 0, . . . , an < 0,

A = diag(a1, . . . , ap,−ap+1, . . . ,−an).

Then the orbit
OA = {X = uAu∗ | u ∈ U(p, q)}

is determined by

OA =
{

X ∈ Ωn | pseudo spectrum(X ) = {a1, . . . , an}
}
.
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There is an analogue of the theorem of Rayleigh.

Assume q ≥ 1.
For X ∈ Ωn consider the projection Y = p(X ) of X on Herm(n − 1,C).
Pseudo eigenvalues of X :

λ1 > · · · > λp > 0 > λp+1 > · · · > λn.

Pseudo eigenvalues of Y :

µ1 > · · · > µp > 0 > µp+1 > · · · > µn−1.

Proposition

The pseudo eigenvalues of Y interlace the eigenvalues of X in the
following way:

µ1 > λ1 > µ2 > · · ·λp−1 > λp > 0 > · · ·
> λp+1 > µp+1 > · · · > λn−1 > µn−1 > λn.
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Sketch of the proof

By computing the rational function

f (z) =
(
(zIp,q − X )−1en | en

)
in two ways one obtains

−
∏n−1

i=1 (z − µi )∏n
i=1(z − λi )

=
n∑

i=1

wi

z − λi
.

Poles : pseudo eigenvalues of Y
Zeros : pseudo eigenvalues of the zeros.
Residues : wi > 0 for i = 1, . . . , p, wi < 0 for i = p + 1, . . . , n, and

n∑
i=1

wi = −1.



Orbital measures and spline functions



Orbital measures and spline functions

There is also an analogue of the formula of Baryshnikov.

The orbit OA carries an unbounded positive measure which is
U(p, q)-invariant, unique up to a positive factor. Let µA denote such a
measure. This orbital measure is the image of a Haar measure α on
U(p, q). ∫

OA

f (X )µA(dX )

∫
U(p,q)

f (uAu∗)α(du).

Proposition The pseudo radial part ν of the projection of the orbital
measure µA on Herm(n − 1,C) is given by∫

Rn−1

f (t)ν(dt) =
C

Vn(a1, . . . , an)

∫ ∞
a1

dt1

∫ a1

a2

dt2 . . .

∫ ap−1

ap

dtp∫ ap+1

ap+2

dtp+1 . . .

∫ an−1

an

dtn−1Vn−1(t)f (t).
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The proposition can be proven by using an analogue of the
Harish-Chandra-Itzykson-Zuber integral, i.e. an explicit formula for the
Fourier-Laplace transform of the orbital measure µA: for
Z = diag(z1, . . . , zn) with Re zi < 0 for i = 1, . . . , p, Re zi > 0 for
i = p + 1, . . . , n,∫
OA

etr ZXµA(dX ) = C
1

Vn(a)Vn(z)
det(eai zj )1≤i,j≤p det(eai zj )p+1≤i,j≤n.

This is a special case of a formula obtained by Ben Säıd and Ørsted for
reductive groups G such GC/G is an ordered symmetric space (2005).
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