Measurable regularity properties of infinite-dimensional Lie groups

Helge Glöckner (Paderborn)

Bedlewo, September 30, 2016

Reference:

Measurable regularity properties of infinite-dimensional Lie groups, arXiv:1601.02568

Parameter dependence of solutions to ODEs with measurabe right-hand sides:

$$\begin{split} M \text{ compact smooth manifold} \\ \mathcal{X}(M) \text{ Fréchet space of } C^{\infty}\text{-vector fields on } M \\ \text{For } y_0 \in M, \ \gamma \in L^1([0,1],\mathcal{X}(M)), \text{ ODE} \\ & \left\{ \begin{array}{l} y'(t) \ = \ \gamma(t)(y(t)) \\ y(0) \ = \ y_0; \end{array} \right. \\ \text{solution } \eta_{y_0}. \text{ If } \Phi^{\gamma}(t)(y_0) := \eta_{y_0}(t), \text{ then} \\ & \Phi^{\gamma} \colon [0,1] \rightarrow \text{Diff}(M). \end{split} \\ \\ \mathbf{Theorem (G.'15) } \Phi^{\gamma} \in AC([0,1], \text{Diff}(M)), \text{ and} \\ L^1([0,1],\mathcal{X}(M)) \rightarrow AC([0,1], \text{Diff}(M)), \ \gamma \mapsto \Phi^{\gamma} \end{split}$$

is C^{∞} .

Likewise for M non-compact, $\gamma \in L^1([0,1], \mathcal{X}_c(M))$

Vector-valued Lebesgue spaces

If E is a Fréchet space, let $\mathcal{L}^1([a,b],E)$ be the space of all measurable maps $\gamma \colon [a,b] \to E$ such that

$$q \circ \gamma \in \mathcal{L}^1[a, b]$$

for each cts seminorm q on E and $\gamma([a,b])$ is separable.

Vector-valued absolutely continuous functions

Call $\eta: [a, b] \to E$ absolutely continuous if there exists $\gamma \in \mathcal{L}^1([a, b], E)$ such that

 $(\forall t \in [a, b])$ $\eta(t) = \eta(a) + \int_a^t \gamma(s) \, ds.$

Then $\eta'(t) = \gamma(t)$ almost everywhere

Get locally convex space AC([a, b], E)

 ∞ -dim Lie group: group G with smooth manifold structure modelled on a locally convex space E such that group operations are smooth; $\mathfrak{g} := L(G) := T_e G$

Smooth maps (Keller's C_c^{∞} -maps):

E, F lcx spaces, $U \subseteq E$ open

cts map $f\colon U\to F$ called ${\bf smooth}$ if iterated directional derivatives

$$(D_{y_n}\cdots D_{y_1}f)(x)$$

exist $\forall n \&$ continuous in $(x, y_1, \ldots, y_n) \in U \times E^n$.

Diffeomorphism groups

M compact smooth manifold

 $\operatorname{Diff}(M)$ group of C^{∞} -diffeomorphisms of M

is an ∞ -dim Lie group; parametrization of some open identity neighbourhood $U \subseteq \text{Diff}(M)$:

 $\mathcal{X}(M) \supseteq V \to U \subseteq \mathsf{Diff}(M), \quad X \mapsto \exp \circ X$

where exp: $TM \rightarrow M$ is the exponential function for a Riemannian metric g on M.

Mapping groups

Let G be an ∞ -dim Lie group modelled on a locally convex space E and $\phi: G \supseteq U \rightarrow V \subseteq E$ a chart around e. Then

AC([0, 1], V) is open in AC([0, 1], E)

and AC([0,1],G) can be given a Lie group structure with

 $AC([0,1],U) \rightarrow AC([0,1],V), \quad \gamma \mapsto \phi \circ \gamma$ as a chart around the neutral element *e*.

General context: regularity of inf-dim Lie groups

G acts on *TG*: For $g \in G$, right translation $\rho_g \colon G \to G$, $x \mapsto xg$ is smooth; for $v \in TG$ set $v.g := T\rho_g(v)$

If $\gamma: [0,1] \to \mathfrak{g} = T_e G$ is smooth, then

$$\begin{cases} \eta'(t) = \gamma(t).\eta(t) \\ \eta(0) = e \end{cases}$$

has at most one solution $\eta: [0,1] \to G$; write $Evol^r(\gamma) := \eta$

 $\operatorname{\textbf{Defn}}$ (Milnor) If each smooth curve in $\mathfrak g$ has an evolution and

 $\operatorname{Evol}^r \colon C^{\infty}([0,1],\mathfrak{g}) \to C^{\infty}([0,1],G)$

is smooth, then G is called regular

Surprising fact: All known Lie groups regular

Thm. (Milnor'84) Let G and H be Lie groups. If G is 1-connected and H is regular, then for every cts Lie algebra hom $\psi \colon \mathfrak{g} \to \mathfrak{h}$ there exists a smooth group hom $\phi \colon G \to H$ with $T_e \phi = \psi$. **Defn** Say a Fréchet-Lie group G is L^1 -regular if

$$\begin{cases} \eta'(t) = \gamma(t).\eta(t) \\ \eta(0) = e \end{cases}$$

has a (necessarily unique) solution $\text{Evol}^r(\gamma) := \eta \in AC([0,1],G)$ for each $\gamma \in L^1([0,1],\mathfrak{g})$ and

$$\operatorname{Evol}^r \colon L^1([0,1],\mathfrak{g}) \to AC([0,1],G)$$

is smooth.

Connection to first theorem on parameter-dependence:

Diff(M) has Lie algebra $\mathcal{X}(M)$; theorem says Diff(M) is L^1 -regular; evolution is

$$\mathsf{Evol}^r(\gamma) = \Phi^\gamma,$$

the flow of time-dependent vector field

$$\gamma \in L^1([0,1],\mathcal{X}(M))$$

Further examples.

(a) Every Banach-Lie group is L^1 -regular (G.'15), e.g. $C^k(M, H)$ for M compact, $k \in \mathbb{N}_0$, H a Banach-Lie group

(b) $C^{\infty}(M,H) = \lim_{\leftarrow} C^k(M,H)$ is L^1 -regular

And many more!

One application:

Theorem (G.'15) If G is L^1 -regular, then G has the Trotter property, i.e.,

 $\lim_{n \to \infty} \left(\exp_G(tv/n) \exp_G(tw/n) \right)^n = \exp_G\left(t(v+w) \right)$

for all $v, w \in L(G)$, uniformly for t in compact sets.

L^1 -regularity of Banach-Lie groups

Lemma A. Let U be an open subset in a Fréchet space, E be a Banach space and

 $f \colon U \times E \to E$

be a smooth map which is linear in the second argument. Then the following map is smooth:

 $f_*: C([0,1],U) \times L^1([0,1],E) \to L^1([0,1],E),$

 $(\eta, \gamma) \mapsto f \circ (\eta, \gamma).$

Lemma B. (Fixed points with parameters). Let P be an open set in a locally convex space, B be a closed ball in a Banach space and

 $f: P \times B \to B$

be a smooth map such that the maps $f_p := f(p, .): B \to B$ form a uniform family of contractions for $p \in P$, i.e.,

$$\sup_{p\in P} \operatorname{Lip}(f_p) < 1.$$

Let $x_p \in B$ be the unique fixed point of f_p . Then $P \to B$, $p \mapsto x_p$ is smooth. If \mathfrak{g} is a Banach space and the open 0-neighbhd $G \subseteq \mathfrak{g}$ a local Banach-Lie group, define

 $f\colon G\times \mathfrak{g}\to \mathfrak{g}$

via $f(g,x) := d\rho_g(0,x)$. Let $\gamma \in L^1([0,1],\mathfrak{g})$. For η in C([0,1],G),

$$\eta'(t) = f(\eta(t), \gamma(t)), \quad \eta(0) = 0$$

can be rewritten as the integral equation

$$\eta = J(f_*(\eta, \gamma))$$

with $J: L^1([0,1],\mathfrak{g}) \to C([0,1],\mathfrak{g})$,

$$J(\theta)(t) := \int_0^t \theta(s) \, ds.$$

It can be solved for small γ using Banach's Fixed Point Theorem (Picard Iteration). By Lemmas A and B, $\text{Evol}^r(\gamma) = \eta$ is smooth in γ .

L^1 -regularity of diffeomorphism groups

M compact C^{∞} -manifold, $\gamma \in L^1([0, 1], \mathcal{X}(M))$; use

 $f: M \times \mathcal{X}(M) \to TM$, $(p, X) \mapsto X(p)$ is C^{∞} .

For fixed $y_0 \in M$ can solve

 $\eta'(t) = \gamma(t)(\eta(t)) = f(\eta(t), \gamma(t)), \quad \eta(0) = y_0$ as above using a Picard iteration for small γ ; get $\eta = \eta_{y_0}$. Set $\Phi(t)(y_0) := \eta_{y_0}(t)$. Show

 $\Phi(t) \in \text{Diff}(M), \quad \Phi \in AC([0, 1], \text{Diff}(M))$ and $\Phi'(t) \circ \Phi(t)^{-1} = \gamma(t)$, i.e., $\text{Evol}^r(\gamma) = \Phi$. Using smooth parameter-dependence of fixed points (and exponential laws), show Evol^r is smooth.