On the Fokas-Gel'fand theorem for integrable systems

A. Michel Grundland

Centre de Recherches Mathématiques
Université de Montréal
and
Département de Mathématiques et d'Informatique
Université du Québec à Trois-Rivières
$50^{\text {th }}$ Seminar "Sophus Lie"
Bẹdlewo, Poland $(25,09,2016)$

Abstract

The Fokas-Gel'fand theorem on the immersion formula of 2D-surfaces is related to the study of Lie symmetries of an integrable system. A rigorous proof of this theorem is presented which may help to better understand the immersion formula of 2D-surfaces in Lie algebras. It is shown, that even under weaker conditions, the main results of this theorem is still valid. A connection is established between three different analytic descriptions for immersion functions of 2D-surfaces, corresponding to the following three types of symmetries: gauge symmetries of the linear spectral problem, conformal transformations in the spectral parameter and generalized symmetries of the integrable system. The theoretical results are applied to the $\mathbb{C} P^{N-1}$ sigma model and several soliton surfaces associated with these symmetries are constructed. It is shown that these surfaces are linked by gauge transformations. The Fokas-Gel'fand procedure can also be adapted for constructing soliton surfaces associated with integrable ODE's admitting Lax representations, and applied to ODE's for the elliptic and Painlevé P1 equations.

Outline

1 Immersion formulas for soliton surfaces
2 Application of the method
3 Conformal symmetries and gauge transformations
4 Generalized symmetries and gauge transformations
5 The Sym-Tafel immersion formula versus the Fokas-Gel'fand immersion formula

6 The $\mathbb{C} P^{N-1}$ sigma model and soliton surfaces
7 Soliton surfaces associated with the $\mathbb{C} P^{1}$ sigma model
8 Links between immersion formulas
9 Soliton surfaces associated with integrable ODE's
10 Concluding remarks and future perspectives

Immersion formulas for soliton surfaces

Let us consider an integrable system of PDEs in two independent variables x_{1}, x_{2}

$$
\begin{equation*}
\Omega[u]=0, \tag{1}
\end{equation*}
$$

where $[u]=\left(x, u^{(n)}\right) \in J^{n}(X \times U)$. Suppose that the system (1) is obtained as the compatibility of a matrix LSP written in the form

$$
\begin{equation*}
\partial_{\alpha} \Phi\left(x_{1}, x_{2}, \lambda\right)-U_{\alpha}([u], \lambda) \Phi\left(x_{1}, x_{2}, \lambda\right)=0, \quad \alpha=1,2 \tag{2}
\end{equation*}
$$

In what follows, we assume that the potential matrices U_{α} and the wavefunction Φ can be defined on the extended jet space $\mathcal{N}=\left(J^{n}, \lambda\right)$, where λ is the spectral parameter. The compatibility condition of the LSP (2), often called the ZCC

$$
\begin{equation*}
D_{2} U_{1}-D_{1} U_{2}+\left[U_{1}, U_{2}\right]=0, \quad D_{\alpha}=\partial_{\alpha}+u_{J, \alpha}^{k} \partial_{u_{j}^{k}}, \quad \alpha=1,2 \tag{3}
\end{equation*}
$$

which is assumed to be valid for all values of λ, implies (1). The LSP (2) can be written as

$$
\begin{equation*}
D_{\alpha} \Phi([u], \lambda)-U_{\alpha}([u], \lambda) \Phi([u], \lambda)=0 . \quad \alpha=1,2 \tag{4}
\end{equation*}
$$

As long as the potential matrices $U_{\alpha}([u], \lambda)$ satisfy the ZCC (3), there exists a group-valued function Φ which satisfies (4) and consequently can be defined formally on the extended jet space $\mathcal{N}=\left(J^{n}, \lambda\right)$.

Immersion formulas for soliton surfaces

A. Fokas and I. Gel'fand [1996] looked for a simultaneous infinitesimal deformation of the LSP (4) which preserved ZCC (3)

$$
\left(\begin{array}{c}
\tilde{U}_{1} \tag{5}\\
\tilde{U}_{2} \\
\tilde{\Phi}
\end{array}\right)=\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\Phi
\end{array}\right)+\epsilon\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\Phi F
\end{array}\right)+O\left(\epsilon^{2}\right), \quad 0<\epsilon \ll 1
$$

where the matrices $\tilde{U}_{1}, \tilde{U}_{2}, A_{1}, A_{2}$ and F take values in the Lie algebra \mathfrak{g}, while $\tilde{\Phi}=\Phi(I+\epsilon F)$ belong to the corresponding Lie group G. The infinitesimal deformation of the ZCC (3) requires that the matrix functions A_{1} and A_{2} satisfy

$$
\begin{equation*}
D_{2} A_{1}-D_{1} A_{2}+\left[A_{1}, U_{2}\right]+\left[U_{1}, A_{2}\right]=0 \tag{6}
\end{equation*}
$$

The infinitesimal deformation of the LSP (4) implies that the function F satisfies

$$
\begin{equation*}
D_{\alpha} F=\Phi^{-1} A_{\alpha} \Phi, \quad \alpha=1,2 \tag{7}
\end{equation*}
$$

The requirement (6) coincides with the compatibility condition for (7). Fokas and Gel'fand determined that the necessary condition for the existence of a \mathfrak{g}-valued immersion function F of a 2D-surface in \mathfrak{g} can be expressed in terms of the matrices U_{α} and A_{α} which satisfy IDZCC (6).

Theorem 1 (Fokas and Gel'fand [1996])

If the matrix functions $U_{\alpha} \in \mathfrak{g}, \alpha=1,2$ and $\Phi \in G$ of the LSP (4) satisfy the ZCC (3) and $A_{\alpha} \in \mathfrak{g}$ are two linearly independent matrix functions which satisfy the IDZCC,

$$
\begin{equation*}
D_{2} A_{1}-D_{1} A_{2}+\left[A_{1}, U_{2}\right]+\left[U_{1}, A_{2}\right]=0 \tag{8}
\end{equation*}
$$

then there exists (up to affine transformations) a 2D-surface with a \mathfrak{g}-valued immersion function $F([u], \lambda)$ such that the tangent vectors to this surface are linearly independent and are given by

$$
\begin{equation*}
D_{\alpha} F([u], \lambda)=\Phi^{-1} A_{\alpha}([u], \lambda) \Phi, \quad \alpha=1,2 \tag{9}
\end{equation*}
$$

The $1^{\text {st }}$ and $2^{\text {nd }}$ fundamental forms of the surface are expressible in terms of U_{α}, A_{α} only. The term integrable surfaces refers to surfaces associated with integrable GMC eqs.

Theorem 2 (A Fokas et al [2000], our formulation)

(The main result on the immersion of 2D-surfaces in Lie algebras)
Let the set of scalar functions $\left\{u^{k}\right\}$ satisfy an integrable system of PDEs $\Omega[u]=0$. Let the G-valued function $\Phi([u], \lambda)$ satisfy the LSP (4) of \mathfrak{g}-valued potentials $U_{\alpha}([u], \lambda)$. Let us define two linearly independent \mathfrak{g}-valued matrix functions $A_{\alpha}([u], \lambda)$ by the equations

$$
A_{\alpha}([u], \lambda)=\beta(\lambda) D_{\lambda} U_{\alpha}+\left(D_{\alpha} S+\left[S, U_{\alpha}\right]\right)+\operatorname{pr} \omega_{R} U_{\alpha} . \quad D_{\lambda}=\partial_{\lambda} \quad \alpha=1,2 \quad \text { (10) }
$$

Here $\beta(\lambda)$ is an arbitrary scalar function of $\lambda, S=S([u], \lambda)$ is an arbitrary \mathfrak{g}-valued matrix function defined on the jet space $\mathcal{N}, \omega_{R}=R^{k}[u] \partial_{u^{k}}$ is the vector field, written in evolutionary form, of the generalized symmetries of the integrable PDEs $\Omega[u]=0$ given by the ZCC (3). Then there exists a 2D-surface with immersion function $F([u], \lambda)$ in the Lie algebra \mathfrak{g} given by the formula (up to an additive \mathfrak{g}-valued constant)

$$
\begin{equation*}
F([u], \lambda)=\Phi^{-1}\left(\beta(\lambda) D_{\lambda} \Phi+S \Phi+\operatorname{pr} \omega_{R} \Phi\right), \quad \text { where } \omega_{R}=R^{k}[u] \partial_{u^{k}} \tag{11}
\end{equation*}
$$

Links between the Fréchet derivatives and evolutionary vectors fields are

$$
\begin{equation*}
\operatorname{pr} \omega_{R} U_{\alpha}=\frac{D U_{\alpha}}{D u^{j}} R^{j}, \quad \operatorname{pr} \omega_{R} \Phi=\frac{D \Phi}{D u^{j}} R^{j}, \quad \operatorname{pr} \omega_{R}=\omega_{R}+D_{J} R^{k} \partial_{u_{j}^{k}} . \tag{12}
\end{equation*}
$$

$$
F([u], \lambda)=\Phi^{-1}\left(\beta(\lambda) D_{\lambda} \Phi+S \Phi+\operatorname{pr} \omega_{R} \Phi\right)
$$

The integrated form of the surface defines a mapping $F: \mathcal{N} \rightarrow \mathfrak{g}$ and we will refer to it as the ST immersion formula (when $S=0, \omega_{R}=0$)

$$
\begin{equation*}
F^{S T}([u], \lambda)=\beta(\lambda) \Phi^{-1}\left(D_{\lambda} \Phi\right) \in \mathfrak{g}, \tag{13}
\end{equation*}
$$

the CD immersion formula (when $\beta=\omega_{R}=0$)

$$
\begin{equation*}
F^{C D}([u], \lambda)=\Phi^{-1} S([u], \lambda) \Phi \in \mathfrak{g}, \tag{14}
\end{equation*}
$$

or the FG immersion formula (when $\beta=0, S=0$)

$$
\begin{equation*}
F^{F G}([u], \lambda)=\phi^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \in \mathfrak{g} . \tag{15}
\end{equation*}
$$

Immersion formulas for soliton surfaces

Let us consider the case when $\beta=S=0$. The FG immersion function associated with the generalized symmetries of the integrable PDEs $\Omega[u]=0$ is

$$
\begin{align*}
& F([u], \lambda)=\Phi^{-1} \frac{D \Phi}{D u^{j}} R^{j}=\Phi^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \in \mathfrak{g}, \quad \alpha=1,2 \tag{16}\\
& D_{\alpha} F([u], \lambda)=\Phi^{-1} A_{\alpha}([u], \lambda) \Phi, \quad A_{\alpha}([u], \lambda)=\frac{D U_{\alpha}}{D u^{\prime}} R^{j}=\operatorname{pr}_{R} U_{\alpha} \in \mathfrak{g},
\end{align*}
$$

Let us discuss the validity of the FGFI (16). A vector field written in evolutionary form ω_{R} defined on the jet space N

$$
\omega_{R}=R^{k}[u] \frac{\partial}{\partial u^{k}}, \quad \operatorname{pr} \omega_{R}=R^{k}[u] \frac{\partial}{\partial u^{k}}+\left(D_{J} R^{k}[u]\right) \frac{\partial}{\partial u_{j}^{k}}
$$

is a generalized symmetry of the ZCC (3) iff

$$
\begin{align*}
\operatorname{pr} \omega_{R}\left(D_{2} U_{1}-D_{1} U_{2}+\left[U_{1}, U_{2}\right]\right)= & D_{2}\left(\operatorname{pr} \omega_{R} U_{1}\right)-D_{1}\left(\operatorname{pr} \omega_{R} U_{2}\right) \tag{17}\\
& +\left[\operatorname{pr} \omega_{R} U_{1}, U_{2}\right]+\left[U_{1}, \operatorname{pr} \omega_{R} U_{2}\right]=0
\end{align*}
$$

whenever $\Omega[u]=D_{2} U_{1}-D_{1} U_{2}+\left[U_{1}, U_{2}\right]=0$. The expression (17) is equivalent to the IDZCC

$$
\begin{equation*}
D_{2} A_{1}-D_{1} A_{2}+\left[A_{1}, U_{2}\right]+\left[U_{1}, A_{2}\right]=0, \quad A_{\alpha}=\operatorname{pr} \omega_{R} U_{\alpha}, \quad \alpha=1,2 \tag{18}
\end{equation*}
$$

Immersion formulas for soliton surfaces

since

$$
\begin{equation*}
\left[D_{\alpha}, \operatorname{pr} \omega_{R}\right]=0, \quad \operatorname{pr} \omega_{R}=R^{k}[u] \frac{\partial}{\partial u^{k}}+\left(D_{J} R^{k}[u]\right) \frac{\partial}{\partial u_{J}^{k}} \quad \alpha=1,2 \tag{19}
\end{equation*}
$$

The Fréchet derivative of Φ with respect to u^{k} in the direction of R^{k} can be expressed through the prolongation of ω_{R}, i.e. $\left(D \Phi / D u^{k}\right) R^{k}=\operatorname{pr} \omega_{R} \Phi$. Hence

$$
\begin{equation*}
F=\Phi^{-1} \frac{D \Phi}{D u^{k}} R^{k}=\Phi^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \tag{20}
\end{equation*}
$$

Differentiating (20) and using the LSP (4) we get

$$
\begin{equation*}
D_{\alpha} F=D_{\alpha}\left(\Phi^{-1} \frac{D \Phi}{D u^{k}} R^{k}\right)=\Phi^{-1}\left[-U_{\alpha} \frac{D \Phi}{D u^{k}} R^{k}+D_{\alpha}\left(\frac{D \Phi}{D u^{k}} R^{k}\right)\right] \tag{21}
\end{equation*}
$$

Immersion formulas for soliton surfaces

Making use of the relations (19) and (20), we can write the $2^{\text {nd }}$ term in (21) as

$$
\begin{equation*}
D_{\alpha}\left(\frac{D \Phi}{D u^{k}} R^{k}\right)=D_{\alpha}\left(\operatorname{pr} \omega_{R} \Phi\right)=\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi\right) \tag{22}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi\right)=\operatorname{pr} \omega_{R}\left(U_{\alpha} \Phi\right)+\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right) \tag{23}
\end{equation*}
$$

we determine that the $2^{n d}$ term in (23) is not necessarily zero.
This term vanishes iff the vector field ω_{R} is also a symmetry of the LSP (4) in the sense that

$$
\begin{equation*}
\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)=0, \quad \text { whenever } \quad D_{\alpha} \Phi-U_{\alpha} \Phi=0 . \tag{24}
\end{equation*}
$$

Let us assume that (24) holds. Then from (22) we get

$$
\begin{align*}
\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi\right) & =\operatorname{pr} \omega_{R}\left(U_{\alpha} \Phi\right)=\left(\operatorname{pr} \omega_{R} U_{\alpha}\right) \Phi+U_{\alpha}\left(\operatorname{pr} \omega_{R} \Phi\right) \\
& =\left(\frac{D U_{\alpha}}{D u^{k}} R^{k}\right) \Phi+U_{\alpha}\left(\frac{D \Phi}{D u^{k}} R^{k}\right) . \tag{25}
\end{align*}
$$

Immersion formulas for soliton surfaces

Substituting (25) into (21) and using (18) we obtain the tangent vectors $D_{\alpha} F$ in the form postulated by Theorem 1

$$
\begin{align*}
D_{\alpha} F & =\Phi^{-1}\left[-U_{\alpha}\left(\frac{D \Phi}{D u^{k}} R^{k}\right)+\left(\frac{D U_{\alpha}}{D u^{k}} R^{k}\right)+U_{\alpha}\left(\frac{D \Phi}{D u^{k}} R^{k}\right) \Phi\right] \\
& =\Phi^{-1}\left(\frac{D U_{\alpha}}{D u^{k}} R^{k}\right) \Phi=\Phi^{-1}\left(\operatorname{pr} \omega_{R} U_{\alpha}\right) \Phi=\Phi^{-1} A_{\alpha}([u], \lambda) \Phi \tag{26}
\end{align*}
$$

Thus, under the condition that ω_{R} is also a symmetry of the LSP (4), there exists a 2D-surface with \mathfrak{g}-valued immersion function given by

$$
\begin{equation*}
F=\Phi^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \in \mathfrak{g} . \tag{27}
\end{equation*}
$$

Hence the FG immersion formula is applicable in its original form.

Immersion formulas for soliton surfaces

Proposition 1: If the vector field ω_{R} is a generalized symmetry of the ZCC associated with $\Omega[u]=0$ and if two linearly independent \mathfrak{g}-valued matrix functions are defined by the equations

$$
\begin{equation*}
A_{\alpha}=\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1}, \quad \alpha=1,2 \tag{28}
\end{equation*}
$$

then there exists an immersion function F of a 2D-surface which is governed by the formula (up to an additive \mathfrak{g}-valued constant)

$$
\begin{equation*}
F([u], \lambda)=\Phi^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \in \mathfrak{g} \tag{29}
\end{equation*}
$$

consistent with the tangent vectors

$$
\begin{equation*}
D_{\alpha} F=\Phi^{-1}\left\{\left(\operatorname{pr} \omega_{R} U_{\alpha}\right) \Phi+\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right\} . \tag{30}
\end{equation*}
$$

Proof. The IDZCC

$$
D_{2} A_{1}-D_{1} A_{2}+\left[A_{1}, U_{2}\right]+\left[U_{1}, A_{2}\right]=0
$$

are exactly the compatibility equation for (30) with A_{α} given by (28) and so the immersion function F exists and is given by (29), up to an additive \mathfrak{g}-valued constant.

Application of the method

The construction of soliton surfaces requires three terms for an explicit representation of the immersion function $F \in \mathfrak{g}$:

1. An LSP $D_{\alpha} \Phi-U_{\alpha}([u], \lambda) \Phi=0, \alpha=1,2$ for the integrable PDE.
2. A generalized symmetry $\omega_{R}=R^{k}[u] \partial_{u^{k}}$ of the integrable PDE.
3. A solution Φ of the LSP associated with the soliton solution of the integrable PDE.

Note that item 1 is always required. In its presence, even without one of the remaining two objects, we can obtain an immersion function F.

1. When a solution Φ of the LSP is unknown, the geometry of the surface F can be obtained using the non-degenerate Killing form on the Lie algebra \mathfrak{g}. The 2D-surface with the immersion function F can be interpreted as a pseudo-Riemannian manifold.
2. When the generalized symmetries ω_{R} of the integrable PDE are unknown but we know a solution Φ of the LSP then we can define the 2D-soliton surface using the gauge transformation and the λ-invariance of the ZCC

$$
\begin{equation*}
F=\Phi^{-1}\left(\beta(\lambda) D_{\lambda} \Phi+S \Phi\right), \tag{31}
\end{equation*}
$$

Application of the method

Equation (31) is consistent with the tangent vectors

$$
\begin{equation*}
D_{\alpha} F=\beta(\lambda) \Phi^{-1}\left(D_{\lambda} U_{\alpha}\right)+\Phi^{-1}\left(D_{\alpha} S+\left[S, U_{\alpha}\right]\right) \Phi . \tag{32}
\end{equation*}
$$

In all cases, the tangent vectors and the unit normal vector to a 2D-surface expressed in terms of matrices $A_{1}, A_{2} \in \mathfrak{g}$ are

$$
D_{\alpha} F=\Phi^{-1} A_{\alpha} \Phi \in \mathfrak{g}, \quad N=\frac{\phi^{-1}\left[A_{1}, A_{2}\right] \Phi}{\left(\frac{\epsilon}{2} \operatorname{tr}\left[A_{1}, A_{2}\right]^{2}\right)^{1 / 2}} \in \mathfrak{g}, \quad \epsilon= \pm 1
$$

$$
\begin{equation*}
A_{\alpha}=\beta(\lambda)\left(D_{\lambda} U_{\alpha}\right)+\left(D_{\alpha} S+\left[S, U_{\alpha}\right]\right)+\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1} . \quad \alpha=1,2 \tag{34}
\end{equation*}
$$

The first and second fundamental forms are given by

$$
\begin{equation*}
I=g_{i j} d x_{i} d x_{j}, \quad I I=b_{i j} d x_{i} d x_{j}, \quad i=1,2 \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i j}=\frac{\epsilon}{2} \epsilon \operatorname{tr}\left(A_{i} A_{j}\right) \quad b_{i j}=\frac{\epsilon}{2} \operatorname{tr}\left(\left(D_{j} A_{i}+\left[A_{i}, U_{j}\right]\right) N\right), \quad \epsilon= \pm 1 . \tag{36}
\end{equation*}
$$

Application of the method

This gives the following expressions for the mean and Gaussian curvatures

$$
\begin{align*}
& H=\frac{1}{\Delta}\left\{\operatorname{tr}\left(A_{2}^{2}\right) \operatorname{tr}\left(\left(D_{1} A_{1}+\left[A_{1}, U_{1}\right]\right) N\right)\right. \\
&-8 \operatorname{tr}\left(A_{1} A_{2}\right) \operatorname{tr}\left(\left(D_{2} A_{1}+\left[A_{1}, U_{2}\right]\right) N\right) \\
&\left.+\operatorname{tr}\left(A_{1}^{2}\right) \operatorname{tr}\left(\left(D_{2} A_{2}+\left[A_{2}, U_{2}\right]\right) N\right)\right\} \\
& K=\frac{1}{\Delta}\left\{\operatorname{tr}\left(\left(D_{1} A_{1}+\left[A_{1}, U_{1}\right]\right) N\right)\right. \tag{37}\\
& \cdot \operatorname{tr}\left(\left(D_{2} A_{2}+\left[A_{2}, U_{2}\right]\right) N\right) \\
&\left.-2 \operatorname{tr}^{2}\left(\left(D_{2} A_{1}+\left[A_{1}, U_{2}\right]\right) N\right)\right\} \\
& \Delta=\operatorname{tr}\left(A_{1}^{2}\right) \operatorname{tr}\left(A_{2}^{2}\right)-4 \operatorname{tr}\left(A_{1} A_{2}\right),
\end{align*}
$$

which are expressible in terms of U_{α} and A_{α} only.

Conformal symmetries and gauge transformations

Proposition 2: A symmetry of the ZCC (3) of the LSP associated with an integrable system $\Omega[u]=0$ is a λ-conformal symmetry iff there exists a \mathfrak{g}-valued matrix function (gauge) $S_{1}=S_{1}([u], \lambda)$ which is a solution of the system of PDEs

$$
\begin{equation*}
D_{\alpha} S_{1}+\left[S_{1}, U_{\alpha}\right]=\beta(\lambda) D_{\lambda} U_{\alpha} . \quad \alpha=1,2 \tag{38}
\end{equation*}
$$

Outline of the proof. (\Rightarrow) The linearly independent matrices

$$
\begin{equation*}
A_{\alpha}([u], \lambda)=\beta(\lambda) D_{\lambda} U_{\alpha}([u], \lambda) \in \mathfrak{g}, \quad \alpha=1,2 \tag{39}
\end{equation*}
$$

associated with the λ-conformal symmetry of the ZCC (3) satisfy the IDZCC

$$
\begin{equation*}
D_{2} A_{1}-D_{1} A_{2}+\left[A_{1}, U_{2}\right]+\left[U_{1}, A_{2}\right]=0 \tag{40}
\end{equation*}
$$

and the corresponding ST immersion function is

$$
\begin{equation*}
F^{S T}([u], \lambda)=\beta(\lambda) \Phi^{-1} D_{\lambda} \Phi \in \mathfrak{g}, \tag{41}
\end{equation*}
$$

Conformal symmetries and gauge transformations

with linearly independent tangent vectors

$$
\begin{equation*}
D_{\alpha} F^{S T}=\beta(\lambda) \Phi^{-1}\left(D_{\lambda} U_{\alpha}\right) \Phi, \quad \alpha=1,2 . \tag{42}
\end{equation*}
$$

Any \mathfrak{g}-valued matrix function can be written as the adjoint group action on its Lie algebra. This implies the existence of a matrix function $S_{1}([u], \lambda) \in \mathfrak{g}$ for which the STIF (41) is the CDIF, i.e.

$$
\begin{equation*}
F^{C D}([u], \lambda)=\Phi^{-1} S_{1}([u], \lambda) \Phi \in \mathfrak{g} \tag{43}
\end{equation*}
$$

with tangent vectors

$$
\begin{equation*}
D_{\alpha} F^{C D}=\Phi^{-1}\left(D_{\alpha} S_{1}+\left[S_{1}, U_{\alpha}\right]\right) \Phi, \quad \alpha=1,2 . \tag{44}
\end{equation*}
$$

By comparing the tangent vectors (42) and (44) we obtain the system of PDEs (38).The system (38) is a solvable one since

$$
\begin{align*}
& \beta(\lambda) D_{2}\left(D_{\lambda} U_{1}\right)-\beta(\lambda) D_{1}\left(D_{\lambda} U_{2}\right)-\left[\beta(\lambda) D_{\lambda} U_{2}-\left[S_{1}, U_{2}\right], U_{1}\right]-\left[S_{1}, D_{2} U_{1}\right] \\
& +\left[\beta(\lambda) D_{\lambda} U_{1}-\left[S_{1}, U_{1}\right], U_{2}\right]+\left[S_{1}, D_{1} U_{2}\right]=0, \tag{45}
\end{align*}
$$

is identically satisfied whenever the ZCC (3) and the system of PDEs (38) hold.

Conformal symmetries and gauge transformations

So if we can find a gauge $S_{1}([u], \lambda)$ which satisfies the system of PDEs (38), then the STIF (41) can always be represented by a gauge.
(\Leftarrow) Conversely, comparing the immersion formulas (41) with (43) we find a linear matrix equation for Φ

$$
\begin{equation*}
D_{\lambda} \Phi=\frac{1}{\beta(\lambda)} S_{1}([u], \lambda) \Phi . \tag{46}
\end{equation*}
$$

If the gauge $S_{1}([u], \lambda)$ is known, then by solving (46) we can determine Φ and obtain the STIF for 2D-soliton surfaces. Hence, the STIF (41) is equivalent to the CDIF (43) for the gauge S_{1}, which satisfies the system of PDEs (38),

$$
D_{\alpha} S_{1}+\left[S_{1}, U_{2}\right]=\beta(\lambda) D_{\lambda} U_{\alpha}, \quad \alpha=1,2
$$

Generalized symmetries and gauge transformations

Proposition 3: A vector field $\omega_{R}=R^{k}[u] \partial_{u^{k}}$ is a generalized symmetry of the ZCC (3) associated with $\Omega[u]=0$ iff there exists a \mathfrak{g}-valued matrix function (gauge) $S_{2}=S_{2}([u], \lambda)$ which is a solution of the system of PDEs

$$
\begin{equation*}
D_{\alpha} S_{2}+\left[S_{2}, U_{\alpha}\right]=\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1} . \quad \alpha=1,2 \tag{47}
\end{equation*}
$$

Outline of the proof. (\Rightarrow) An evolutionary vector field ω_{R} is a generalized symmetry of the ZCC (3) iff

$$
\begin{equation*}
\operatorname{pr} \omega_{R}\left(D_{2} U_{1}-D_{1} U_{2}+\left[U_{1}, U_{2}\right]\right)=0 \tag{48}
\end{equation*}
$$

whenever

$$
\begin{equation*}
D_{2} U_{1}-D_{1} U_{2}+\left[U_{1}, U_{2}\right]=0 \tag{49}
\end{equation*}
$$

Eq (48) is equivalent to the IDZCC (6), with two linearly independent matrices

$$
\begin{equation*}
A_{\alpha}([u], \lambda)=\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1} \in \mathfrak{g}, \quad \alpha=1,2 \tag{50}
\end{equation*}
$$

which identically satisfy the IDZCC

$$
D_{2} A_{1}-D_{1} A_{2}+\left[A_{1}, U_{2}\right]+\left[U_{1}, A_{2}\right]=0
$$

Generalized symmetries and gauge transformations

An integrated form of the FGIF associated with the vector field ω_{R} and the tangent vectors are given by are given by

$$
\begin{gather*}
F^{F G}([u], \lambda)=\Phi^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \in \mathfrak{g}, \quad D_{\alpha} F^{F G}([u], \lambda)=\Phi^{-1} A_{\alpha}([u], \lambda) \Phi . \tag{51}\\
A_{\alpha}([u], \lambda)=\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1}
\end{gather*}
$$

Any \mathfrak{g}-valued matrix function can be written as the adjoint group action on its Lie algebra. This implies the existence of a matrix function $S_{2}([u], \lambda) \in \mathfrak{g}$, for which the FGIF (51) is the CDFI

$$
\begin{equation*}
F^{C D}([u], \lambda)=\Phi^{-1} S_{2}([u], \lambda) \Phi \in \mathfrak{g}, \tag{52}
\end{equation*}
$$

with tangent vectors

$$
\begin{equation*}
D_{\alpha} F^{C D}=\Phi^{-1}\left(D_{\alpha} S_{2}+\left[S_{2}, U_{\alpha}\right]\right) \Phi, \quad \alpha=1,2 . \tag{53}
\end{equation*}
$$

Generalized symmetries and gauge transformations

By comparing the tangent vectors (51) and (44) we obtain the system of PDEs (47). The system (47) is a solvable one, since

$$
\begin{equation*}
\left[S_{2}, D_{2} U_{1}-D_{1} U_{2}\right]+\left[\left[S_{2}, U_{1}\right], U_{2}\right]-\left[\left[S_{2}, U_{2}\right], U_{1}\right]=0 \tag{54}
\end{equation*}
$$

which is identically satisfied whenever the ZCC (3) and (47) hold. So if one can find a gauge S_{2} which satisfies (47), then the FGIF (51) can be represented by a gauge.
(\Leftarrow) Conversely, comparing the immersion formulas (51) and (43) we find

$$
\begin{equation*}
\operatorname{pr} \omega_{R} \Phi=S_{2}([u], \lambda) \Phi \tag{55}
\end{equation*}
$$

If the gauge S_{2} is known, then by solving (55) we can determine Φ and obtain the FGIF for 2D-surfaces. Hence, the FGIF (51) is equivalent to the CDIF for the gauge S_{2}, which satisfies the system of PDEs (47)

$$
D_{\alpha} S_{2}+\left[S_{2}, U_{\alpha}\right]=\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1}
$$

The Sym-Tafel immersion formula versus the Fokas-Gel'fand immersion formula

Proposition 4: Suppose that the gauges S_{1} and S_{2} are the two \mathfrak{g}-valued matrix functions which are solutions of the systems of PDEs

$$
\begin{array}{r}
D_{\alpha} S_{1}+\left[S_{1}, U_{\alpha}\right]=\beta(\lambda) D_{\lambda} U_{\alpha}, \quad \alpha=1,2, \\
D_{\alpha} S_{2}+\left[S_{2}, U_{\alpha}\right]=\operatorname{pr} \omega_{R} U_{\alpha}+\left(\operatorname{pr} \omega_{R}\left(D_{\alpha} \Phi-U_{\alpha} \Phi\right)\right) \Phi^{-1}, \tag{56}
\end{array}
$$

respectively.
If the gauge S_{2} is a non-singular matrix then there exists a matrix $\left(S_{1} \cdot S_{2}^{-1}\right)$ which defines a mapping from the FG immersion formula (51) to the ST immersion formula (41)

$$
\begin{equation*}
D_{\lambda} \Phi=\frac{1}{\beta(\lambda)}\left(S_{1} \cdot S_{2}^{-1}\right)\left(\operatorname{pr} \omega_{R} \Phi\right) . \tag{57}
\end{equation*}
$$

Alternatively, if the gauge S_{1} is a non-singular matrix, then their exists a matrix $\left(S_{2} \cdot S_{1}^{-1}\right)$ which defines a mapping from the ST immersion formula (41) to the FG immersion formula (51)

$$
\begin{equation*}
\operatorname{pr} \omega_{R} \Phi=\beta(\lambda)\left(S_{2} \cdot S_{1}^{-1}\right)\left(D_{\lambda} \Phi\right) \tag{58}
\end{equation*}
$$

The Sym-Tafel immersion formula versus the Fokas-Gel'fand immersion formula

$$
\begin{equation*}
\beta(\lambda)\left(D_{\lambda} \Phi\right)=S_{1} S_{2}^{-1}\left(\operatorname{pr} \omega_{R} \Phi\right) \tag{57}
\end{equation*}
$$

Proof. Equation (57) is obtained by eliminating the wavefunction Φ from the right-hand side of equations

$$
\begin{equation*}
\beta(\lambda) D_{\lambda} \Phi=S_{1} \Phi, \quad \operatorname{pr} \omega_{R} \Phi=S_{2} \Phi \tag{59}
\end{equation*}
$$

respectively. So the link between the immersion functions $F^{S T}$ and $F^{F G}$ exists, up to a \mathfrak{g}-valued constant gauge.

The Sym-Tafel immersion formula versus the Fokas-Gel'fand immersion formula

Figure: Representation of the relations between the wavefunction $\Phi \in G$ and the \mathfrak{g}-valued ST and FG formulas for immersions of 2D-soliton surfaces.

$$
\begin{equation*}
S_{1}=\beta(\lambda)\left(D_{\lambda} \Phi\right) \Phi^{-1}, \quad S_{2}=\left(\operatorname{pr} \omega_{R} \Phi\right) \Phi^{-1} \tag{60}
\end{equation*}
$$

To conclude, in all three cases we give explicit expressions for 2D-soliton surfaces immersed in the Lie algebra \mathfrak{g} and demonstrate that one such surface can be transformed to another one through a gauge.

The $\mathbb{C} P^{N-1}$ sigma model and soliton surfaces

Consider the $\mathbb{C} P^{N-1}$ model in terms of a rank-one Hermitian projector P

$$
\begin{array}{ll}
{\left[\partial_{+} \partial_{-} P, P\right]=\emptyset} & \partial_{ \pm}=\frac{1}{2}\left(\partial_{1} \pm i \partial_{2}\right) \tag{61}\\
P^{2}=P^{\dagger}=P, \operatorname{tr} P=1 & \partial_{1}=\partial_{\xi_{1}}, \partial_{2}=\partial_{\xi_{2}}
\end{array}
$$

We assume that the model is defined on the Riemann sphere $S^{2}=\mathbb{C} \cup\{\infty\}$ and that its action functional is finite. There exist raising and lowering operators $\Pi_{ \pm}$of solutions of (61) and any solution can be expressed as a raising operator acting on the holomorphic solution

$$
\begin{aligned}
& \Pi_{ \pm}(P)= \begin{cases}\frac{\left(\partial_{ \pm} P\right) P\left(\partial_{\mp} P\right)}{\operatorname{tr}\left(\partial_{ \pm} P P \partial_{\mp} P\right)} & \text { for }\left(\partial_{ \pm} P\right) P\left(\partial_{\mp} P\right) \neq \emptyset \\
\emptyset & \text { for }\left(\partial_{ \pm} P\right) P\left(\partial_{\mp} P\right)=\emptyset\end{cases} \\
& \Pi_{-}\left(P_{k}\right)=P_{k-1}, \quad \Pi_{+}\left(P_{k}\right)=P_{k+1}, \quad \sum_{j=0}^{N-1} P_{j}=\mathbb{I}_{N}, \quad P_{k} P_{j}=\delta_{k j} P_{k}
\end{aligned}
$$

The generalized Weierstrass formula for immersion (GWFI) of 2D-surfaces in $\mathfrak{s u}(N)$ is defined by

$$
\begin{equation*}
F_{k}(\xi, \bar{\xi})=i \int_{\gamma}\left(-\left[\partial P_{k}, P_{k}\right] d \xi+\left[\bar{\partial} P_{k}, P_{k}\right] d \bar{\xi}\right) \in \mathfrak{g}, \quad 0 \leq k \leq N-1 . \tag{62}
\end{equation*}
$$

The $\mathbb{C} P^{N-1}$ sigma model and soliton surfaces

The LSP is given by

$$
\begin{equation*}
\partial_{\alpha} \Phi_{k}=U_{\alpha k} \Phi_{k}, \quad U_{\alpha k}=\frac{2}{1 \pm \lambda}\left[\partial_{\alpha} P_{k}, P_{k}\right], \quad\left(U_{1 k}\right)^{\dagger}=-U_{2 k}, \quad 0 \leq k \leq N-1 \tag{63}
\end{equation*}
$$

(where $\alpha=1,2$ stands for \pm) with solution $\Phi=\Phi([P], \lambda)$ which goes to the identity matrix \mathbb{I}_{N} as $\lambda \rightarrow \infty$

$$
\begin{equation*}
\Phi=\mathbb{I}_{N}+\frac{4 \lambda}{(1-\lambda)^{2}} \sum_{j=0}^{k-1} P_{j}-\frac{2}{1-\lambda} P_{k} \in S U(N), \quad \lambda=i t, \quad t \in \mathbb{R} \tag{64}
\end{equation*}
$$

For the surfaces corresponding to the projectors P_{k}, the integration of the GWFI is performed explicitly

$$
\begin{equation*}
F_{k}=-i\left(P_{k}+2 \sum_{j=0}^{k-1} P_{j}\right)+i c_{k} \mathbb{I}_{N} \in \mathfrak{s u}(N), \quad c_{k}=\frac{2 k+1}{N} \tag{65}
\end{equation*}
$$

and satisfies the algebraic conditions

$$
\begin{equation*}
\left[F_{k}-i c_{k} \mathbb{I}_{N}\right]\left[F_{k}-i\left(c_{k}-1\right) \mathbb{I}_{N}\right]\left[F_{k}-i\left(c_{k}-2\right) \mathbb{I}_{N}\right]=0, \quad \sum_{k=0}^{N-1}(-1)^{k} F_{k}=0 \tag{66}
\end{equation*}
$$

The $\mathbb{C} P^{N-1}$ sigma model and soliton surfaces

We express the model in terms of elements of the $\mathfrak{s u}(N)$ algebra instead of P_{k}

$$
\begin{equation*}
\theta_{k} \equiv i\left(P_{k}-\frac{1}{N} \mathbb{I}_{N}\right) \in \mathfrak{s u}(N) \tag{67}
\end{equation*}
$$

with algebraic restriction

$$
\begin{equation*}
\theta_{k} \cdot \theta_{k}=-i \frac{(2-N)}{N} \theta_{k}+\frac{(1-N)}{N^{2}} \mathbb{I}_{N} \Leftrightarrow P_{k}^{2}=P_{k} \tag{68}
\end{equation*}
$$

The Euler-Lagrange equations become (for simplicity we drop the index k)

$$
\begin{equation*}
\Omega^{j}[\theta]=\left[\left(\partial_{1}^{2}+\partial_{2}^{2}\right) \theta, \theta\right]^{j}=0, \quad j=1, \ldots, N^{2}-1 \tag{69}
\end{equation*}
$$

where $[\cdot, \cdot]^{j}$ denotes the coefficients of the $j^{\text {th }}$ basis element e_{j} for the $\mathfrak{s u}(N)$ algebra. The potential matrices U_{α} expressed in terms of θ are

$$
\begin{align*}
& U_{1}=\frac{-2}{1-\lambda^{2}}\left(\left[\partial_{1} \theta, \theta\right]-i \lambda\left[\partial_{2} \theta, \theta\right]\right) \in \mathfrak{s u}(N), \quad \lambda=i t, \quad t \in \mathbb{R} \\
& U_{2}=\frac{-2}{1-\lambda^{2}}\left(i \lambda\left[\partial_{1} \theta, \theta\right]+\left[\partial_{2} \theta, \theta\right]\right) \in \mathfrak{s u}(N) . \tag{70}
\end{align*}
$$

The $\mathbb{C} P^{N-1}$ sigma model and soliton surfaces

Expressing the wavefunction Φ in terms of $\theta \in \mathfrak{s u}(N)$, we get

$$
\begin{gather*}
\Phi([\theta], \lambda)=\mathbb{I}_{N}+\frac{4 \lambda}{(1-\lambda)^{2}} \sum_{j=0}^{N} \Pi_{-}^{j}(\theta)-\frac{2}{1-\lambda}\left(\frac{1}{N} \mathbb{I}_{N}-i \theta\right) \in S U(N) \tag{71}\\
\Pi_{-}(\theta)=\frac{\bar{\partial} \theta(\mathcal{E}-i \theta) \partial \theta}{\operatorname{tr}(\bar{\partial} \theta(\mathcal{E}-i \theta) \partial \theta)}, \quad \Pi_{+}(\theta)=\frac{\partial \theta(\mathcal{E}-i \theta) \bar{\partial} \theta}{\operatorname{tr}(\partial \theta(\mathcal{E}-i \theta) \bar{\partial} \theta)}, \quad \mathcal{E}=\frac{1}{N} \mathbb{I}_{N}, \tag{72}
\end{gather*}
$$

For any functions f and g, the E-L eqs (69) and its LSP (63) (with the potential matrix (70)) admit the conformal symmetries

$$
\begin{equation*}
\omega_{C_{i}}=\left[f\left(\xi_{i}\right) \partial_{1} \theta^{j}+g\left(\xi_{i}\right) \partial_{2} \theta^{j}\right] \frac{\partial}{\partial \theta^{j}}, \quad i=1,2 . \tag{73}
\end{equation*}
$$

The vector fields $\omega_{C_{i}}$ are related to the fields

$$
\begin{equation*}
\eta_{C_{i}}=\left(\partial_{i} \Phi^{j}\right) \frac{\partial}{\partial \Phi^{j}}+\left(\partial_{i} \cup_{\alpha}^{j}\right) \frac{\partial}{\partial U_{\alpha}^{j}}, \quad i=1,2 \tag{74}
\end{equation*}
$$

which are confomal symmetries of the LSP (63). The integrated form of the surface is given by the FG formula

$$
\begin{equation*}
F([\theta], \lambda)=\Phi^{-1}\left(f\left(\xi_{1}\right) U_{1}+g\left(\xi_{2}\right) U_{2}\right) \Phi \in \mathfrak{s u}(N) . \tag{75}
\end{equation*}
$$

Soliton surfaces associated with the $\mathbb{C} P^{1}$ sigma model

The simplest solutions of the $\mathbb{C} P^{N-1}$ model constitute the Veronese sequence

$$
\begin{gather*}
f=\left(1,\binom{N-1}{1}^{1 / 2} z, \ldots,\binom{N-1}{r}^{1 / 2} z^{r}, \ldots, z^{N-1}\right), \quad P_{k}=\frac{f_{k} \otimes f^{\dagger}}{f_{k}^{\dagger} f_{k}} \\
z=x+i y \in \mathbb{C}, \quad f_{k+1}=\left(\mathbb{I}_{N}-P_{k}\right) \partial f_{k}, \quad 0 \leq k \leq N-1 \tag{76}
\end{gather*}
$$

The only solutions for which the action of the $\mathbb{C} P^{1}(N=2)$ model is finite are holomorphic P_{0} and antiholomorphic P_{1} projectors.

$$
\begin{array}{lll}
P_{0}=\frac{f_{0} \otimes f_{0}^{\dagger}}{f_{0}^{\dagger} f_{0}}=\frac{1}{1+|z|^{2}}\left(\begin{array}{cc}
1 & \bar{z} \\
z & |z|^{2}
\end{array}\right), & f_{0}=(1, z), & k=0 \tag{77}\\
P_{1}=\frac{f_{1} \otimes f_{1}^{\dagger}}{f_{1}^{\dagger} f_{1}}=\frac{1}{1+|z|^{2}}\left(\begin{array}{cc}
|z|^{2} & -\bar{z} \\
-z & 1
\end{array}\right), & f_{1}=\left(\mathbb{I}_{2}-P_{0}\right) \partial f_{0}, & k=1
\end{array}
$$

The integrated forms of the surfaces are given by

$$
\begin{align*}
& F_{0}=i\left(\frac{1}{2} \mathbb{I}_{2}-P_{0}\right)=\frac{i}{1+|z|^{2}}\left(\begin{array}{cc}
\frac{1}{2}\left(|z|^{2}-1\right) & -\bar{z} \\
-z & \frac{1}{2}\left(1-|z|^{2}\right)
\end{array}\right) \in \mathfrak{s u}(2), \tag{78}\\
& F_{1}=-i\left(P_{1}+2 P_{0}\right)+\frac{3 i}{2} \mathbb{I}_{2}=F_{0} .
\end{align*}
$$

Soliton surfaces associated with the $\mathbb{C} P^{1}$ sigma model

The potential matrices $U_{\alpha k}$ become

$$
\begin{align*}
& \begin{array}{l}
U_{10}=U_{11}=\frac{2}{(\lambda+1)\left(1+|z|^{2}\right)^{2}}\left(\begin{array}{cc}
-\bar{z} & -\bar{z}^{2} \\
1 & \bar{z}
\end{array}\right), \quad \lambda=i t, \quad k=0, \\
U_{20}=U_{21}=\frac{2}{(\lambda-1)\left(1+|z|^{2}\right)^{2}}\left(\begin{array}{cc}
1 \\
-z & z
\end{array}\right), \quad t \in \mathbb{R}, \quad k=1,
\end{array} \tag{79}\\
& \left(U_{1 k}\right)^{\dagger}=-U_{2 k} .
\end{align*}
$$

The $S U(2)$-valued soliton wavefunction Φ_{k} in the LSP take the forms

$$
\begin{align*}
& \Phi_{0}=\frac{1}{1+|z|^{2}}\left(\begin{array}{cc}
\frac{-i+t+(i+t)|z|^{2}}{t-i} & \frac{-2 i \bar{z}}{t-i} \\
\frac{-2 i z}{2+i} & \frac{i+t+(t-i)|z|^{2}}{t+i}
\end{array}\right), \quad k=0, \tag{80}\\
& \Phi_{1}=\frac{1}{1+|z|^{2}}\left(\begin{array}{cc}
\frac{1+t^{2}+(t+i)^{2}|z|^{2}}{(t-i)^{2}} & \frac{2(1-i t) \bar{z}}{(t-i)^{2}} \\
\frac{-2(t-i) z}{(t+i)^{2}} & \frac{1+t^{2}+(t-i)^{2}|z|^{2}}{(t+i)^{2}}
\end{array}\right), \quad k=1 .
\end{align*}
$$

Let us consider separately four different analytic descriptions for the immersion functions of 2D-surfaces in $\mathfrak{s u}(2)$ which are related to four different types of symmetries.

1. The Sym-Tafel formula for immersion (conformal symmetry in λ)
The ZCC of the $C P^{1}$ model admits a conformal symmetry in the spectal parameter λ. The tangent vectors $D_{\alpha} F_{k}^{S T}$ associated with this symmetry are given by

$$
D_{\alpha} F_{k}^{S T}=-i \Phi_{k}^{-1}\left(D_{\lambda} U_{\alpha k}\right) \Phi_{k}, \quad \text { where } \beta(\lambda)=i, \quad \alpha=1,2, \quad k=0,1
$$

are linearly independent. The integrated forms of the 2D-surfaces in $\mathfrak{s u}(2)$ are given by the ST formula

$$
\begin{align*}
& F_{0}^{S T}=-i \Phi_{0}^{-1}\left(D_{\lambda} \Phi_{0}\right)=\frac{-2}{\left(1+t^{2}\right)^{2}\left(1+|z|^{2}\right)^{2}} \\
& \left(\begin{array}{cc}
-|z|^{2}\left[t^{2}-3+|z|^{2}\left(1+t^{2}\right)\right] & \bar{z}\left[(t+i)^{2}+|z|^{2}\left(3+2 i t+t^{2}\right)\right] \\
z\left[(t-i)^{2}+|z|^{2}\left(3-2 i t+t^{2}\right)\right] & |z|^{2}\left[t^{2}-3+|z|^{2}\left(t^{2}+1\right)\right]
\end{array}\right), \quad k=0 \\
& F_{1}^{S T}=-i \Phi_{1}^{-1}\left(D_{\lambda} \Phi_{1}\right)=\frac{-2}{\left(1+t^{2}\right)^{2}\left(1+|z|^{2}\right)^{2}} \\
& \left(\begin{array}{cc}
-\left[\left(t^{2}+1\right)\left(1+2|z|^{4}\right)+3|z|^{2}\left(t^{2}-3\right)\right] & \bar{z}\left[6 i t-5+t^{2}+|z|^{2}\left(7+6 i t+t^{2}\right)\right] \\
z\left[t^{2}-6 i t-5+|z|^{2}\left(7+t^{2}-6 i t\right)\right] & \left(t^{2}+1\right)\left(1+2|z|^{4}\right)+3|z|^{2}\left(t^{2}-3\right)
\end{array}\right) .
\end{align*}
$$

1. The Sym-Tafel formula for immersion (conformal symmetry in λ)

The surfaces $F_{k}^{S T}$ have positive constant Gaussian and mean curvatures and are spheres (see Fig. 2a)

$$
\begin{equation*}
K=H=4 . \tag{82}
\end{equation*}
$$

The $\mathfrak{s u}(2)$-valued gauges $S_{k}^{S T}$ associated with the STIF $F_{k}^{S T}$ are

$$
\begin{aligned}
& S_{0}^{S T}=\left(D_{\lambda} \Phi_{0}\right) \Phi_{0}^{-1}=\frac{-2}{1+|z|^{2}}\left(\begin{array}{cc}
\frac{-|z|^{2}}{t^{2}+1} & \frac{\bar{z}}{(t-i)^{2}} \\
\frac{z}{(t+i)^{2}} & \frac{|z|^{2}}{t^{2}+1}
\end{array}\right), \quad k=0, \\
& S_{1}^{S T}=\left(D_{\lambda} \Phi_{1}\right) \Phi_{1}^{-1}=\frac{-2}{1+|z|^{2}}\left(\begin{array}{cc}
\frac{-\left(1+2|z|^{2}\right)}{t^{2}+1} & \frac{\bar{z}(t+i)^{2}}{\left(t-i 4^{4}\right.} \\
\frac{z(t-i)^{2}}{(t+i)^{4}} & \frac{1+2|z|^{2}}{t^{2}+1}
\end{array}\right), \quad k=1, \\
& \operatorname{det} S_{k}^{S T} \neq 0, \quad \operatorname{tr} S_{k}^{S T}=0 .
\end{aligned}
$$

1. The Sym-Tafel formula for immersion (conformal symmetry in λ)

For $\mathbb{C} P^{1}$ model we have $\left(F_{k}^{S T}\right)^{2}+\frac{1}{4} \mathbb{I}_{2}=0, k=0,1$ and $F_{k}^{S T}=-i \sum_{\alpha=1}^{3} x_{\alpha k} \sigma_{\alpha}$ $\Rightarrow x_{1 k}^{2}+x_{2 k}^{2}+x_{3 k}^{2}=\frac{1}{4}$, spheres. (In what follows we use coordinate notation (x, y) on a surface) $F_{k}^{S T}=\left\{\frac{x}{1+x^{2}+y^{2}}, \frac{y}{1+x^{2}+y^{2}}, \frac{1-x^{2}-y^{2}}{2\left(1+x^{2}+y^{2}\right)}\right\}$
2. The Fokas-Gel'fand formula for immersion (scaling symmetries)

The surfaces $F_{k}^{g} \in \mathfrak{s u}(2)$ associated with the sclaing symmetries of the $\mathbb{C} P^{1}$ model

$$
\begin{equation*}
\omega_{k}^{g}=\left(D_{1}\left(z U_{1 k}\right)+\bar{z}\left(D_{2} U_{1 k}\right)\right) \frac{\partial}{\partial \theta^{\top}}+\left(z\left(D_{1} U_{2 k}\right)+D_{2}\left(\bar{z} U_{2 k}\right)\right) \frac{\partial}{\partial \theta^{2}}, \tag{84}
\end{equation*}
$$

have integrated form

$$
\begin{equation*}
F_{k}^{g}=\Phi_{k}^{-1}\left(z U_{1 k}+\bar{z} U_{2 k}\right) \Phi_{k}, \quad k=0,1 \tag{85}
\end{equation*}
$$

(where $U_{\alpha k}$ is given by eqs (79)) The surfaces F_{k}^{g} also have positive curvatures

$$
\begin{equation*}
K_{0}=K_{1}=-4 \lambda^{2}, \quad H_{0}=H_{1}=-4 i \lambda, \quad i \lambda \in \mathbb{R} \tag{86}
\end{equation*}
$$

but are not spheres, since they have boundaries (see Fig. 2b). The $\mathfrak{s u}(2)$-valued gauges $S_{k}^{g}=\left(\operatorname{pr} \omega_{k}^{g} \Phi_{k}\right) \Phi_{k}^{-1}$ associated with ω_{k}^{g} are given by

$$
S_{0}^{g}=S_{1}^{g}=\frac{2}{\left(t^{2}+1\right)\left(1+|z|^{2}\right)^{2}}\left(\begin{array}{cc}
2 i t|z|^{2} & i \bar{z}\left[i-t+|z|^{2}(t+i)\right] \tag{87}\\
z\left[1-i t+|z|^{2}(1+i t)\right] & -2 i t|z|^{2}
\end{array}\right),
$$

where $\operatorname{det} S_{k}^{g} \neq 0$.
2. The Fokas-Gel'fand formula for immersion (scaling symmetries)

A part of ellipsoid: $F_{k}^{g}=\left(\frac{x^{3}-2 x^{2} y+x\left(y^{2}-1\right)-2 y\left(1+y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}\right.$,

$$
\left.-\frac{2 x^{3}+x^{2} y+y\left(y^{2}-1\right)+2 x\left(1+y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}, \frac{2\left(x^{2}+y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}\right)
$$

3. The Fokas-Gel'fand formula for immersion (conformal symmetries)

The surfaces associated with the conformal symmetry

$$
\begin{equation*}
\omega_{k}^{c}=-g_{k}(z) \partial-\bar{g}_{k}(\bar{z}) \bar{\partial}, \quad g_{k}(z)=1+i, \tag{88}
\end{equation*}
$$

have the integrated forms

$$
\begin{equation*}
F_{k}^{c}=\Phi_{k}^{-1}\left(U_{1 k}+U_{2 k}\right) \Phi_{k}, \quad k=0,1 \tag{89}
\end{equation*}
$$

where

$$
\begin{align*}
& U_{10}+U_{20}=U_{11}+U_{21}=\frac{2}{\left(t^{2}+1\right)\left(1+|z|^{2}\right)^{2}} \\
& \left(\begin{array}{cc}
2 z+i(t+i)(z+\bar{z}) & -1-i t+i \bar{z}^{2}(t+i) \\
1+z^{2}+i t\left(z^{2}-1\right) & -[2 z+i(t+i)(z+\bar{z})]
\end{array}\right) . \tag{90}
\end{align*}
$$

The surfaces F_{k}^{c} have the Euler-Poincaré characters

$$
\begin{equation*}
\chi_{k}=\frac{-1}{\pi} \iint_{S^{2}} \partial \bar{\partial} \ln \left[\operatorname{tr}\left(\partial P_{k} \cdot \bar{\partial} P_{k}\right)\right] d x^{1} d x^{2}=2 \tag{91}
\end{equation*}
$$

and $K>0$ means that F_{k}^{c} are homeomorphic to ovaloids (see Fig. 2c).
3. The Fokas-Gel'fand formula for immersion (conformal symmetries)

A cardioid surface: $F_{k}^{c}=\left(\frac{x^{2}-1-4 x y-y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}},-\frac{2\left(1+x^{2}+x y-y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}\right.$,

$$
\left.\frac{2(2 x-y)}{\left(1+x^{2}+y^{2}\right)^{2}}\right)
$$

3. The Fokas-Gel'fand formula for immersion (conformal symmetries)

The $\mathfrak{s u}(2)$-valued gauges S_{k}^{c} associated with ω_{k}^{c} take the form

$$
\begin{align*}
& S_{0}^{c}=\left(\operatorname{pr} \omega^{c} \Phi_{0}\right) \Phi_{0}^{-1}=\frac{2}{\left(1+\mid z z^{2}\right)^{2}} \\
& \left(\begin{array}{cc}
\frac{-i(1-i)(t-i) z+(1+i)(1-i t) \bar{z}}{t^{2}+1} & \frac{(1-i)(1+i t)+(1+i)(1-i t) \bar{z}^{2}}{(t-i)^{2}} \\
\frac{i(1+i)(t+i)-(1-i) z^{2}(t-i)}{(t+i)^{2}} & \frac{(1-i)(1+i t) z+i(1+i)(t+i) \bar{z}}{t^{2}+1}
\end{array}\right), \quad k=0 \\
& S_{1}^{c}=\left(\operatorname{pr} \omega^{c} \Phi_{1}\right) \Phi_{1}^{-1}=\frac{2}{\left(1+\mid z z^{2}\right)^{2}} \tag{92}\\
& \left(\begin{array}{cc}
\frac{-i(1-i)(t-i) z+(1+i)(1-i t) \bar{z}}{t^{2}+1} & \frac{(t+i)^{2}\left[(1-i)(1+i t)+(1+i)(1-i t) \bar{z}^{2}\right]}{(t-i)^{4}} \\
\frac{i(t-i)^{2}\left[(1+i)(t+i)-(1-i)(t-i) z^{2}\right]}{(t+i)^{4}} & \frac{(1-i)(1+i t) z+i(1+i)(t+i) \bar{z}}{t^{2}+1}
\end{array}\right), \quad k=1
\end{align*}
$$

where $\operatorname{det} S_{k}^{c} \neq 0$.
4. The Fokas-Gel'fand formula for immersion (generalized symmetries)

The surfaces associated with the generalized symmetries

$$
\begin{align*}
& \omega_{k}^{R}=\left(D_{1}^{2} U_{1 k}+D_{2}^{2} U_{1 k}+\left[D_{1} U_{1 k}, U_{1 k}\right]+\left[D_{2} U_{1 k}, U_{1 k}\right]\right) \frac{\partial}{\partial \theta^{1}} \tag{93}\\
& +\left(D_{1}^{2} U_{2 k}+D_{2}^{2} U_{2 k}+\left[D_{2} U_{2 k}, U_{2 k}\right]+\left[D_{1} U_{2 k}, U_{2 k}\right]\right) \frac{\partial}{\partial \theta^{2}}, \quad k=0,1
\end{align*}
$$

(where $U_{\alpha k}$ is given by eqs (79)) have the integrated form

$$
\begin{equation*}
F_{k}^{F G}=\Phi^{-1}\left(\operatorname{pr} \omega_{k}^{R} \Phi_{k}\right)=\Phi_{k}^{-1}\left(D_{1} U_{1 k}+D_{2} U_{2 k}\right) \Phi_{k} . \tag{94}
\end{equation*}
$$

consistent with the tangent vectors

$$
\begin{align*}
& D_{1} F_{k}^{F G}=\Phi_{k}^{-1}\left(\operatorname{pr} \omega_{k}^{R} U_{1 k}\right) \Phi_{k} \\
& =\Phi_{k}^{-1}\left(D_{1}^{2} U_{1 k}+D_{2}^{2} U_{1 k}+\left[D_{1} U_{1 k}, U_{1 k}\right]+\left[D_{2} U_{1 k}, U_{1 k}\right]\right) \Phi_{k}, \\
& D_{2} F_{k}^{F G}=\Phi_{k}^{-1}\left(\operatorname{pr} \omega_{k}^{R} U_{2 k}\right) \Phi_{k} \tag{95}\\
& =\Phi_{k}^{-1}\left(D_{1}^{2} U_{2 k}+D_{2}^{2} U_{2 k}+\left[D_{2} U_{2 k}, U_{2 k}\right]+\left[D_{1} U_{2 k}, U_{2 k}\right]\right) \Phi_{k} .
\end{align*}
$$

The surfaces $F_{k}^{F G}$ have $K>0$ and $\chi=2$ and they are homeomorphic to ovaloids.

The $\mathfrak{s u}(2)$-valued gauges $S_{k}^{F G}$ associated with ω_{k}^{R} have the form

$$
\begin{align*}
& S_{k}^{F G}=\left(\operatorname{pr} \omega_{k}^{R} \Phi_{k}\right) \Phi_{k}^{-1}=D_{1} U_{1 k}+D_{2} U_{2 k}=\frac{4}{\left(t^{2}+1\right)\left(1+|z|^{2}\right)^{3}} \\
& \left(\begin{array}{cc}
-z^{2}(1+i t)+\bar{z}^{2}(1-i t) & \bar{z}^{3}(1-i t)+z(i t+1) \\
-i z^{3}(t-i)+i \bar{z}(t+i) & z^{2}(1+i t)-\bar{z}^{2}(1-i t)
\end{array}\right), \quad k=0,1 \tag{96}
\end{align*}
$$

where $\operatorname{det} S_{k}^{F G} \neq 0$.
4. The Fokas-Gel'fand formula for immersion (generalized symmetries)

$$
\begin{aligned}
& F_{k}^{F G}=\left(-\frac{x^{3}-6 x^{2} y-x\left(1+3 y^{2}\right)+2 y\left(1+y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{3}},\right. \\
& \left.\frac{2 x^{3}+y+3 x^{2} y-y^{3}+x\left(2-6 y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{3}},-\frac{2\left(x^{2}-4 x y-y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{3}}\right)
\end{aligned}
$$

Links between FG and ST immersion formulas

The mapping

$$
M_{k}=S_{k}^{S T}\left(S_{k}^{F G}\right)^{-1}, \quad k=0,1
$$

from the FG immersion formulas to the ST immersion formulas are given by

$$
\begin{aligned}
& M_{0}=S_{0}^{S T}\left(S_{0}^{F G}\right)^{-1}=\frac{1}{2\left(t^{2}+1\right)} \\
& \left(\begin{array}{ll}
\frac{-2 i z^{3}(t-i)+\bar{z}\left[(t+i)^{2}+|z|^{2}\left(t^{2}+1\right)\right]}{z(t-i)} & \frac{z\left[(t+i)^{2}+\left(t^{2}+1\right)|z|^{2}+2(1+i t)\right]}{t-i} \\
-\frac{\left[z^{3}\left(1+t^{2}\right)+2 \bar{z}(1-i t)+z(t-i)^{2}\right]}{t+i} & \frac{z(t-i)^{2}+|z|^{2} z\left(t^{2}+1\right)+2 i \bar{z}^{3}(t+i)}{\bar{z}(t+i)}
\end{array}\right), \\
& M_{1}=S_{1}^{S T}\left(S_{1}^{F G}\right)^{-1}=\frac{i}{2|z|^{2}} \\
& \left(\begin{array}{cc}
\frac{-\left(1+2|z|^{2}\right)}{t^{2}+1} & \frac{(i+t))^{2} \bar{z}}{(t-i)^{4}} \\
\frac{z(t-i)^{2}}{(t+i)^{4}} & \frac{1+2|z|^{2}}{t^{2}+1}
\end{array}\right), \\
& \cdot\left(\begin{array}{cc}
z^{2}(i t+1)+\bar{z}^{2}(i t-1) \\
z^{3}(i t+1)+(1-i t) \bar{z} & -z(i t+1)+\bar{z}^{3}(1+i t)+(1-i t) \bar{z}^{2}
\end{array}\right),
\end{aligned}
$$

where $\operatorname{det} M_{k} \neq 0$.

Links between FG and ST immersion formulas

Conversely, there exist mappings from the STIF to the FGIF

$$
\begin{aligned}
& M_{0}^{-1}=S_{0}^{F G}\left(S_{0}^{S T}\right)^{-1}=\frac{2}{\left.(1+|z|)^{2}\right)^{3}} \\
& \left(\begin{array}{cc}
\frac{(t-i)^{2} z+\left(1+t^{2}\right)|z|^{2} z+2(i t-1) \bar{z}^{3}}{(i+t) \bar{z}} & \frac{2(1+i t) z^{2}+(i+t)^{2} \bar{z}^{2}+\left(1+t^{2}\right)|z|^{2} \bar{z}^{2}}{(i t) z} \\
\frac{(t-i)^{2} z^{2}+\left.\left(1+t^{2}\right)| |\right|^{2} z^{2}+2(1-i t) \bar{z}^{2}}{(i+t) \bar{z}} & \frac{-2(1+i t) z^{3}+(i+t) z^{2}+\left(1+t^{2}\right)|z|^{2} \bar{z}}{(t-i) z}
\end{array}\right), \quad k=0 \\
& M_{1}^{-1}=S_{1}^{F G}\left(S_{1}^{S T}\right)^{-1}=\frac{2}{\left(t^{2}+1\right)\left(1+|z|^{2}\right)^{3}\left(1+4|z|^{2}\right)} \\
& \left(\begin{array}{cc}
-z^{2}(1+i t)+\bar{z}^{2}(1-i t) & \bar{z}^{3}(1-i t)+z(1+i t) \\
-z^{3}(1+i t)+\bar{z}(i t-1) & z^{2}(1+i t)-\bar{z}^{2}(1-i t)
\end{array}\right) . \\
& \left(\begin{array}{cc}
\left(1+2|z|^{2}\right)(1+i t)(i+t) & \frac{-i \bar{z}(i+t)^{4}}{(1-i)^{2}} \\
\frac{-i z(t-i)^{4}}{(i+t)^{2}} & \left(1+2|z|^{2}\right)(1-i t)(-i+t)
\end{array}\right) \quad k=1
\end{aligned}
$$

where $\operatorname{det} M_{k}^{-1} \neq 0$.

Applications to ODE's written in the Lax form 1.

Consider an ODE in the independent variable x

$$
\begin{equation*}
\Delta[u] \equiv \Delta\left(x, u, u_{x}, u_{x x}, \ldots\right)=0 \tag{97}
\end{equation*}
$$

which admits a Lax pair with potential matrices $L(\lambda,[u]), M(\lambda,[u])$ taking values in a Lie algebra \mathfrak{g}. These matrices satisfy

$$
\begin{equation*}
D_{x} M+[M, L]=0, \quad \text { whenever } \quad \Delta[u]=0 \tag{98}
\end{equation*}
$$

This Lax representation (98) can be regarded as the compatibility condition of an LSP for a wavefunction Φ taking values in the Lie group G

$$
\begin{gather*}
D_{x} \Phi(\lambda, y,[u])=L(\lambda,[u]) \Phi(\lambda, y,[u]), \tag{99}\\
D_{y} \Phi(\lambda, y,[u])=M(\lambda,[u]) \Phi(\lambda, y,[u]) .
\end{gather*}
$$

Here, we have introduced an auxiliary variable y in the LSP for which

$$
\begin{equation*}
D_{y} L=D_{y} M=0 . \tag{100}
\end{equation*}
$$

ODE's for elliptic equations

Consider a second-order autonomous ODE

$$
\begin{equation*}
u_{x x}=\frac{1}{2} f^{\prime}(u), \quad f^{\prime}(u)=\frac{d}{d u} f(u) \Leftrightarrow u_{x}=\epsilon \sqrt{f(u)}, \quad \epsilon= \pm 1, \tag{101}
\end{equation*}
$$

with solution

$$
\begin{equation*}
\int \frac{d u}{\epsilon \sqrt{f(u)}}=x-x_{0} \tag{102}
\end{equation*}
$$

The ODE (101) admits a Lax pair with potential matrices

$$
L=\frac{1}{2}\left[\begin{array}{cc}
0 & \frac{f^{\prime}(u)}{u+\lambda}-\frac{f(u)-g(\lambda)}{(u+\lambda)^{2}} \tag{103}\\
1 & 0
\end{array}\right], \quad M=\left[\begin{array}{cc}
u_{x} & -\frac{f(u)-g(\lambda)}{u+\lambda} \\
u+\lambda & -u_{x}
\end{array}\right] \in \mathfrak{s l}(2, \mathbb{R}) .
$$

The choice

$$
\begin{equation*}
\operatorname{det} M=-g(\lambda)=f(-\lambda) \tag{104}
\end{equation*}
$$

make L and M polynomial in u, whenever $f(u)$ is polynomial in u.

Wavefunctions

The solutions of the wavefunction which satisfy the LSP are denoted by

$$
\Phi=\left[\begin{array}{ll}
\Phi_{11} & \Phi_{12} \tag{105}\\
\Phi_{21} & \Phi_{22}
\end{array}\right] \in S L(2, \mathbb{R})
$$

with components

$$
\begin{array}{lll}
\Phi_{k 1}=c_{1} \Phi_{k+}+c_{2} \Phi_{k-}, & k=1,2 & \\
\Phi_{k 2}=c_{3} \Phi_{k+}+c_{4} \Phi_{k-}, & c_{i} \in \mathbb{R}, & i=1,2,3,4 \tag{106}
\end{array}
$$

and where

$$
\begin{align*}
& \Phi_{1 \pm}=\frac{ \pm \sqrt{g(\lambda)}+u_{x}}{\sqrt{u+\lambda}} \Psi_{ \pm}, \quad \Phi_{2 \pm}=\sqrt{u+\lambda} \psi_{ \pm} \\
& \Psi_{ \pm}=\exp \left[\pm \sqrt{g(\lambda)}\left(y+\epsilon \int \frac{d u}{2(u+\lambda) \sqrt{f(u)}}\right)\right] \tag{107}
\end{align*}
$$

Here the choice of ϵ comes from $u_{x}=\epsilon \sqrt{f(u)}$. The requirement that $\Phi \in S L(2, \mathbb{R})$ implies

$$
\begin{equation*}
c_{1}=c_{2}=\frac{1}{2}, \quad c_{3}=-c_{4}=-\frac{1}{2} \sqrt{g(\lambda)} . \tag{108}
\end{equation*}
$$

Symmetries of ODE's associated with elliptic functions

Consider a vector field in the evolutionary representation

$$
\begin{equation*}
v_{Q}=Q[u] \frac{\partial}{\partial u} \tag{109}
\end{equation*}
$$

which is a generalized symmetry of the ODE (101) iff

$$
\begin{array}{r}
\operatorname{pr} v_{Q}\left(u_{x x}-\frac{1}{2} f^{\prime}(u)\right)=0, \quad \text { whenever } \quad u_{x x}-\frac{1}{2} f^{\prime}(u)=0, \\
\operatorname{pr}_{Q}=Q[u] \frac{\partial}{\partial u}+D_{J} Q \frac{\partial}{\partial u_{J}} \tag{110}
\end{array}
$$

holds. The determining equation for Q is

$$
\begin{equation*}
D_{x}^{2} Q-\frac{1}{2} f^{\prime \prime}(u) Q=0, \quad \text { whenever } \quad u_{x x}-\frac{1}{2} f^{\prime}(u)=0 \tag{111}
\end{equation*}
$$

The following characteristics Q_{i} 's are solutions of the determining equation

$$
\begin{array}{cc}
Q_{1}=u_{x} & Q_{4}=u u_{x}+x u-\frac{1}{4} x^{2} u_{x} \\
Q_{2}=u_{x} \int f(u)^{3 / 2} d u & Q_{5}=u^{2}-\frac{3}{2} x u u_{x}-\frac{3}{4} x^{2} u+\frac{1}{8} x^{3} u_{x} \\
Q_{3}=x u_{x}+\gamma u \quad \text { when } f(u)=c_{1}+c_{2} u^{\prime}, & I=-2\left(1+\frac{1}{\gamma}\right), \quad \gamma, c_{i} \in \mathbb{R}
\end{array}
$$

Case $Q_{2}=u_{x} \int f(u)^{-3 / 2} d u, f(u)$-arbitrary function

$$
V_{Q_{2}}=Q_{2}[u] \frac{\partial}{\partial u}, \quad Q_{2}[u]=u_{x} \int f(u)^{-3 / 2} d u
$$

is a symmetry of an elliptic equation (101) but it is not a symmetry of the LSP since the action of $\mathrm{pr} V_{Q_{2}}$ on the LSP

$$
\begin{align*}
& \operatorname{pr}_{Q_{2}}\left(D_{x} \Phi-L \Phi\right)=\frac{u_{x}}{2(u+\lambda)^{3 / 2} \sqrt{f(u)}} A, \\
& \operatorname{pr}_{Q_{2}}\left(D_{y} \Phi-M \Phi\right)=\frac{u_{x}}{\sqrt{u+\lambda} \sqrt{f(u)}} A,
\end{align*} \quad A=\left[\begin{array}{cc}
-\left(\Psi_{+}+\Psi_{-}\right) & g(\lambda)^{-1 / 2}\left(\Psi_{+}-\Psi_{-}\right) \tag{113}\\
0 & \Psi_{+}+\Psi_{-}
\end{array}\right]
$$

does not vanish for all solutions Φ of the LSP. Thus, there exists an $\mathfrak{s l}(2, \mathbb{R})$-valued immersion function

$$
\begin{equation*}
F^{Q_{2}}=\Phi^{-1}\left(\operatorname{pr}_{Q_{2}} \Phi\right) \in \mathfrak{s l}(2, \mathbb{R}) \tag{114}
\end{equation*}
$$

with tangent vectors

$$
\begin{gather*}
D_{x} F^{Q_{2}}=\Phi^{-1}\left[\left(\operatorname{pr}_{Q_{2}} L\right) \Phi+\operatorname{prv}_{Q_{2}}\left(D_{x} \Phi-L \Phi\right)\right], \\
D_{y} F^{Q_{2}}=\Phi^{-1}\left[\left(\operatorname{pr}_{Q_{2}} M\right) \Phi+\operatorname{pr}_{Q_{2}}\left(D_{y} \Phi-M \Phi\right)\right], \tag{115}
\end{gather*}
$$

Surfaces associated with Jacobi elliptic functions

$$
\begin{equation*}
u_{x}^{2}=\left(1-u^{2}\right)\left(k_{1}+k_{2} u^{2}\right), \quad k^{\prime 2}+k^{2}=1, \quad 0 \leq k, k^{\prime} \leq 1 . \tag{116}
\end{equation*}
$$

k_{1}	k_{2}	Solution of (116)
1	$-k^{2}$	$\operatorname{sn}(x, k)$
$k^{\prime 2}$	k^{2}	$\operatorname{cn}(x, k)$
$-k^{\prime 2}$	1	$\operatorname{dn}(x, k)$

Choosing

$$
\begin{equation*}
g(\lambda)=f(-\lambda)=\left(1-\lambda^{2}\right)\left(k_{1}+k_{2} \lambda^{2}\right) \tag{117}
\end{equation*}
$$

the matrices L and M become

$$
\begin{align*}
& L=\frac{1}{2}\left[\begin{array}{cc}
0 & -3 k_{2} u^{2}+2 \lambda k_{2} u+k_{1}-k_{2}-k_{2} \lambda^{2} \\
1 & 0
\end{array}\right] \in \mathfrak{s l}(2, \mathbb{R}) \\
& M=\left[\begin{array}{cc}
u_{x} & (u-\lambda)\left[k_{2}\left(u^{2}+\lambda^{2}\right)+k_{1}-k_{2}\right] \\
u+\lambda & -u_{x}
\end{array}\right] \in \mathfrak{s l}(2, \mathbb{R}) \tag{118}
\end{align*}
$$

Wavefunction and surfaces

$$
\Phi=\left[\begin{array}{cc}
\frac{\left(\sqrt{g(\lambda)}-u_{x}\right) \Psi_{+}-\left(\sqrt{g(\lambda)}+u_{x}\right) \Psi_{-}}{2 \sqrt{u+\lambda}} & \frac{\left(\sqrt{g(\lambda)}+u_{x} \Psi_{-}-\left(\sqrt{g(\lambda)}-u_{x}\right) \Psi_{+}\right)}{2 \sqrt{g(\lambda)} \sqrt{u+\lambda}} \tag{119}\\
\frac{\sqrt{u+\lambda}\left(\Psi_{+}+\Psi_{-}\right)}{2} & \frac{\sqrt{u+\lambda}\left(\Psi_{-}-\Psi_{+}\right)}{2 \sqrt{g(\lambda)}}
\end{array}\right]
$$

where Π is an elliptic integral of the 3rd kind

$$
\begin{align*}
& \Psi_{ \pm}=\exp [\sqrt{g(\lambda)}(y+\Gamma(u, \lambda))] \\
& \Gamma(u, \lambda)=\frac{1}{\lambda \sqrt{k_{1}}} \Pi\left(u, \frac{1}{\lambda^{2}}, \sqrt{\frac{-k_{2}}{k_{1}}}\right) \tag{120}\\
& -\frac{1}{2 \sqrt{g(\lambda)}} \tanh ^{-1}\left(\frac{\left(k_{2}-k_{1}-2 k_{2} \lambda^{2}\right) u^{2}+\left(k_{2}-k_{1}\right) \lambda^{2}+2 k_{1}}{2 \sqrt{g(\lambda)} \sqrt{\left(1-u^{2}\right)\left(k_{1}+k_{2} u^{2}\right)}}\right)+c_{0}
\end{align*}
$$

2D-surface $F=\Phi^{-1}\left(\operatorname{pr} v_{Q} \Phi\right)$

Surface $F \in \mathfrak{s l}(2, \mathbb{R})$ for $u=\operatorname{sn}(x, k)$ with $g(\lambda)<0, \lambda=1.2$ and $x, y \in[-9,9]$. The axes indicate the components of the immersion function F in the e_{i} basis of $\mathfrak{s l}(2, \mathbb{R}) . F$ admits a simple pole

Application to ODE's written in the Lax form 2

Suppose now that the dependent functions $x^{k}(t)$ depend only on t. The matrices \mathcal{U}^{α} are functions on the jet space defined by t and $x^{k}(t)$ and the other independent variable, which here takes the form of a spectral parameter λ. In this case, the ZCC is equivalent to a system of ODE's

$$
\begin{equation*}
\Omega[x]=D_{\lambda} \mathcal{U}^{1}([x], \lambda)-D_{t} \mathcal{U}^{2}([x], \lambda)+\left[\mathcal{U}^{1}([x], \lambda), \mathcal{U}^{2}([x], \lambda)\right]=0, \tag{121}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{t}=\frac{\partial}{\partial t}+x_{t} \frac{\partial}{\partial x}+x_{t t} \frac{\partial}{\partial t}+\ldots, \quad D_{\lambda}=\frac{\partial}{\partial \lambda} \tag{122}
\end{equation*}
$$

The theoretical considerations are illustrated via surfaces associated with the Painlevé P1 equation.

Painlevé P1 surfaces

Here, we present surfaces associated with the Painlevé equation P1

$$
\begin{equation*}
\Omega[x]=x_{t t}-6 x^{2}-t=0 \tag{123}
\end{equation*}
$$

The LSP for P 1 is given in terms of the potential matrices [Jimbo Miwa 1981]

$$
\begin{gather*}
D_{t} \Phi=U^{1} \Phi \\
\mathcal{U}^{1}=\left[\begin{array}{cc}
D_{\lambda} \Phi=U^{2} \Phi \\
1 & \lambda+2 x
\end{array}\right], \quad \mathcal{U}^{2}=\left[\begin{array}{cc}
-x_{t} & 2 \lambda^{2}+2 x \lambda+t+2 x^{2} \\
2(\lambda-x) & x_{t}
\end{array}\right] \in \mathfrak{s l (2 \mathbb { R })}
\end{gather*}
$$

which satisfy the ZCC

$$
\Omega[x] \equiv D_{\lambda} \mathcal{U}^{1}-D_{t} \mathcal{U}^{2}+\left[\mathcal{U}^{1}, \mathcal{U}^{2}\right]=\left(x_{t t}-6 x^{2}-t\right) e_{1}, \quad e_{1}=\left(\begin{array}{ll}
0 & 1 \tag{125}\\
0 & 0
\end{array}\right)
$$

Painlevé P1 surfaces

Consider the surface F associated with the conformal transformation in the spectral parameter (the ST formula)

$$
\begin{equation*}
F=\Phi^{-1}\left(D_{\lambda} \phi\right) \in \mathfrak{s l l}(2, \mathbb{R}) \tag{126}
\end{equation*}
$$

The tangent vectors to the surface F are determined via A^{1}, A^{2}

$$
\begin{gather*}
D_{t} F=\Phi^{-1}\left(D_{\lambda} \mathcal{U}^{1}\right) \Phi, \quad A_{1}=D_{\lambda} \mathcal{U}^{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{R}) \tag{127}\\
D_{\lambda} F=\Phi^{-1}\left(D_{\lambda} \mathcal{U}^{1}\right) \Phi, \quad A_{2}=D_{\lambda} \mathcal{U}^{2}=\left(\begin{array}{cc}
0 & 4 \lambda+2 x \\
2 & 0
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{R}) \tag{128}
\end{gather*}
$$

The 1st fundamental form associated with the surface F is

$$
\begin{equation*}
I(F)=2 d t d \lambda+4(x+2 \lambda) d \lambda^{2} \tag{129}
\end{equation*}
$$

Note that the tangent vector $D_{t} F$ is an isotropic vector.

Painlevé P1 surfaces

In the moving frame defined by the (nonconstant) wavefunction Φ, the normal to the surface is constant

$$
\begin{equation*}
N=\Phi^{-1} e_{1} \Phi \in \mathfrak{s l}(2, \mathbb{R}) \tag{130}
\end{equation*}
$$

and so the image of the surface F, written in this moving frame, lies in a plane. The 2nd fundamental form and the Gaussian and mean curvatures for F are

$$
\begin{align*}
& I(F)=-d t^{2}+4(x-\lambda) d t d x+2\left(4 x^{2}+4 \lambda x+t-\lambda^{2}\right) d \lambda^{2} \\
& K(F)=2\left(6 x^{2}+t\right)=x_{t t} \tag{131}\\
& H(F)=2(2 x+\lambda)
\end{align*}
$$

Note that the Gaussian curvature does not depend on λ and the sign of the second derivative of the solution $x_{t t}$ of P1 determines whether the points of F are hyperbolic, elliptic or parabolic.

Painlevé P1 surfaces

The umbilic points of F are determined by

$$
\begin{equation*}
H^{2}-K=4(2 x+\lambda)^{2}-2 x_{t} t=0, \quad x_{t t}=6 x^{2}+t \tag{132}
\end{equation*}
$$

which are exactly the curves

$$
\begin{equation*}
\lambda=-2 x \pm\left(\frac{x_{t t}}{2}\right)^{1 / 2} \tag{133}
\end{equation*}
$$

There are no umbilic points in the hyperbolic domain where $x_{t t}<0$. (i.e. $K<0$)

$$
\left\{\begin{array}{l}
t=2\left(\lambda^{2}+x^{2}+4 \lambda x\right) \tag{134}\\
x=-2 \lambda \pm \frac{1}{\sqrt{2}}\left(6 \lambda^{2}+t\right)^{1 / 2}
\end{array}\right.
$$

The Laurent series solution of P1 diverge along the curve

$$
\begin{equation*}
2(2 x+\lambda)^{2}-\left(6 x^{2}+t\right)=0 \tag{135}
\end{equation*}
$$

Concluding remarks

1. We have adapted the Fokas-Gel'fand procedure for constructing soliton surfaces associated with DEs admitting a Lax representation.
2. We have established the connections between three different analytic descriptions for the immersion functions of 2D-surfaces, derived through the links between three types of symmetries: gauge symmetries of the linear spectral problem, conformal transformations in the spectral parameter and generalized symmetries of the integrable system.
3. We have shown that the immersion formulas associated with these symmetries can be linked by gauge transformations.
4. The procedure was applied to the $\mathbb{C} P^{N-1}$ sigma model, and for the elliptic and Painlevé P1 equations.

Future perspectives

1. To use ODE surfaces to approximate PDE surfaces, using group invariant solutions of the integrable PDE. To expand general solutions near group invariant ones through variation of parameters.
2. To use recurrence operators of generalized symmetries of an integrable nonlinear PDE to obtain recurrence relations for surfaces.
3. To investigate how the integrable characteristics, such as Hamiltonian structure and conserved quantities, are manifest in the surfaces.
4. To employ the variational problem of geometric functionals, i.e. the Willmore functional interpreted as an action functional

$$
\begin{equation*}
\mathcal{W}(F)=\frac{1}{4} \int_{\Omega} \operatorname{tr}\left(\mathcal{H}^{2}\right) \sqrt{g} d \xi d \bar{\xi}, \quad \Omega \subset \mathbb{C} . \tag{136}
\end{equation*}
$$

to compute the class of equations which are determining equations for the surface (the Euler-Lagrange equations).
5. To develop computer techniques for the visualization of mathematical formulas. A visual image of a surface reflecting the behavior of a solution can be of interest, providing some clues about the properties of this surface, otherwise hidden in some implicit mathematical expressions.

Thank you for your attention.

References

Brody D C, Graefe E-M (2010) Coherent states and rational surfaces, J. Phys. A 4325505 (14pp)
固 Cieślíski J 1997 A generalized formula for integrable classes of surfaces in Lie algebras Journal of Mathematical Physics 38 4255-4272
Doliwa A and Sym A 1992 Constant mean curvature surfaces in E^{3} as an example of soliton surfaces, Nonlinear Evolution Equations and Dynamical Systems (Boiti M, Martina L and Pempinelli F, eds, World Scientific, Singapore, pp 111-7)
Fokas A S and Gel'fand I M 1996 Surfaces on Lie groups, on Lie algebras, and their integrability Comm. Math. Phys. 177 203-220
E Fokas A S, Gel'fand I M, Finkel F and Liu Q M 2000 A formula for constructing infinitely many surfaces on Lie algebras and integrable equations Sel. Math. 6 347-375

Goldstein PP and Grundland AM 2010 Invariant recurrence relations for $\mathbb{C} P^{N-1}$ models J. Phys. A: Math. Theor. 43265206 (18pp)
(Grundland AM, Levi D and Martina L 2016 On immersion formulas for soliton surfaces Submitted in Acta Polytechnica, Czech Technical University in Prague

- Grundland AM 2015 Soliton surfaces in the generalized symmetry approach Theor. Math. Phys. (accepted)
Grundland AM, Post S and Riglioni D 2014 Soliton surfaces and generalized symmetries of integrable systems J. Phys. A.: Math. Theor. 47 015201 (14pp)
E Grundland A M and Post S 2011 Soliton surfaces associated with generalized symmetries of integrable equations J. Phys. A.: Math. Theor. 44 165203 (31pp)

Eandolfi G 2003 New results on the Canham-Helfrich membrane model obtained via the generalized Weierstrass representation, J Phys A 36, 11937-54.
Olver PJ 1993 Applications of Lie Groups to Differential Equations 2nd edn (New York, Springer)
Sym A 1982 Soliton surfaces Lett. Nuovo Cimento 33 394-400
[- Tafel J 1995 Surfaces in \mathbb{R}^{3} with prescribed curvature J. Geom. Phys. 17 381-390
回 Zakharov V E and Mikhailov A V 1979 Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method Sov. Phys. - JETP 47 1017-49
围 Zakrzewski W 1989 Low dimensional sigma models (Bristol Hilger)

Appendix A1: Preliminaries on classical and

 generalized symmetries$X \ni x=\left(x_{1}, \ldots, x_{p}\right), U \ni u=\left(u^{1}, \ldots, u^{q}\right)$ are spaces of independent and dependent variables, respectively.
$J^{n}=J^{n}(X \times U)$ is the n-jet space over $X \times U$.
The coordinates of J^{n} are given by x_{α}, u^{k} and

$$
\begin{equation*}
u_{J}^{k}=\frac{\partial^{n} u^{k}}{\partial x_{j_{1}} \ldots \partial x_{j_{n}}} \tag{137}
\end{equation*}
$$

$J=\left(j_{1}, \ldots, j_{n}\right)$ is a symmetric multi-index. On J^{n} we define a system of PDEs

$$
\begin{equation*}
\Omega^{\mu}\left(x, u^{(n)}\right)=0 . \quad \mu=1, \ldots, m \tag{138}
\end{equation*}
$$

A vector field v tangent to $J^{0}=X \times U$ is denoted by

$$
\begin{equation*}
v=\xi^{\alpha}(x, u) \partial_{\alpha}+\varphi^{k}(x, u) \partial_{k}, \quad \text { where } \quad \partial_{\alpha}=\frac{\partial}{\partial x_{\alpha}}, \quad \partial_{k}=\frac{\partial}{\partial u^{k}} \tag{139}
\end{equation*}
$$

$\mathrm{pr}^{(n)} v$ on J^{n} is a truncated formal series

$$
\begin{align*}
& \operatorname{pr}^{(n)} v=\xi^{\alpha} \partial_{\alpha}+\varphi_{J}^{k} \frac{\partial}{\partial u_{j}^{k}} . \tag{140}\\
& \varphi_{J}^{k}=D_{J} R^{k}+\xi^{\alpha} u_{J, \alpha}^{k}, \quad R^{k}=\varphi^{k}-\xi^{\alpha} u_{\alpha}^{k},
\end{align*}
$$

Appendix A1: Preliminaries on classical and generalized symmetries

The total derivatives are

$$
\begin{equation*}
D_{\alpha}=\partial_{\alpha}+u_{J, \alpha}^{k} \frac{\partial}{\partial u_{J}^{k}}, \quad \alpha=1, \ldots, p \tag{141}
\end{equation*}
$$

and R^{k} are the so-called characteristics of the vector field v. The representation of v can be written equivalently as

$$
\begin{equation*}
v=\xi^{\alpha} D_{\alpha}+\omega_{R}, \quad \omega_{R}=R^{k} \frac{\partial}{\partial u^{k}} \tag{142}
\end{equation*}
$$

The vector field v is a classical Lie point symmetry of a nondegenerate system of PDEs (138) iff its n-th prolongation of v is such that

$$
\begin{equation*}
\operatorname{pr}^{(n)} v \Omega^{\mu}\left(x, u^{(n)}\right)=0, \quad \mu=1, \ldots, m \tag{143}
\end{equation*}
$$

whenever $\Omega^{\mu}\left(x, u^{(n)}\right)=0, \mu=1, \ldots, m$ are satisfied. Every solution of PDEs can be represented by its graph, $u^{k}=\theta^{k}(x)$, which is a section of J^{0}.

Appendix A1: Preliminaries on classical and generalized symmetries

If the graph is preserved by G (equivalently, vectors form \mathfrak{g} are tangent to the graph) then the related solution is said to be G-invariant

$$
\begin{equation*}
\Omega\left(x, \theta^{(n)}\right)=0, \quad \varphi_{a}^{k}(x, \theta)-\xi_{a}^{\alpha}(x, \theta) \theta_{, \alpha}^{k}=0, \quad a=1, \ldots, r \tag{144}
\end{equation*}
$$

A generalized vector field is expressed in terms of the characteristics

$$
\begin{equation*}
\omega_{R}=R^{k}[u] \frac{\partial}{\partial u^{k}} \quad \text { where } \quad[u]=\left(x, u^{(n)}\right) \in J^{n}(X \times U) \text {. } \tag{145}
\end{equation*}
$$

The prolongation of an evolutionary vector field ω_{R} is given by

$$
\begin{equation*}
\operatorname{pr} \omega_{R}=\omega_{R}+D_{J} R^{k} \frac{\partial}{\partial u_{J}^{k}} . \tag{146}
\end{equation*}
$$

A vector field ω_{R} is a generalized symmetry of a nondegenerated system of PDEs (138) iff

$$
\begin{equation*}
\operatorname{pr} \omega_{R} \Omega^{\mu}\left(x, u^{(n)}\right)=0, \tag{147}
\end{equation*}
$$

whenever $\Omega\left(x, u^{(n)}\right)=0$ and its differential consequences are satisfied.

Appendix A2: Surfaces associated with $\mathbb{C} P^{N-1}$ models

The surfaces are defined by a contour integral

$$
\begin{equation*}
F(\xi, \bar{\xi})=i \int_{\gamma}(-[\partial P, P] d \xi+[\bar{\partial} P, P] d \bar{\xi}) . \tag{148}
\end{equation*}
$$

The Euler-Lagrange eqs are

$$
\begin{equation*}
\partial[\bar{\partial} P, P]+\bar{\partial}[\partial P, P]=0 . \tag{149}
\end{equation*}
$$

The action integral is

$$
\begin{equation*}
\int \mathcal{L} d \xi d \bar{\xi}=\operatorname{tr}(\partial P \cdot \bar{\partial} P), \quad \text { with } P^{2}=P, \quad P^{\dagger}=P \tag{150}
\end{equation*}
$$

Eq (149) ensures that (148) is an exact differential. The mapping of $\Omega \subset S^{2}$ into a set of $\mathfrak{s u}(N)$ matrices

$$
\begin{equation*}
\Omega \ni(\xi, \bar{\xi}) \mapsto F_{k}(\xi, \bar{\xi}) \in \mathfrak{s u}(N) \simeq \mathbb{R}^{N^{2}-1}, \quad 0 \leq k \leq N-1 \tag{151}
\end{equation*}
$$

is the GWFI of 2D surfaces in $\mathbb{R}^{N^{2}-1}$.

Appendix A2: Surfaces associated with $\mathbb{C} P^{N-1}$ models

The target spaces of the projectors P_{k} are 1D vector functions $f_{k}(\xi, \bar{\xi}) \in \mathbb{C}^{N}$, constituting an orthogonal basis in \mathbb{C}^{N}

$$
\begin{equation*}
P_{k}=\frac{f_{k} \otimes f_{k}^{\dagger}}{f_{k}^{\dagger} f_{k}}, \quad P_{k} P_{l}=\delta_{k l} P_{k} \quad \text { (no summation) }, \quad \sum_{k=0}^{N-1} P_{k}=\mathbb{I}_{N} . \tag{152}
\end{equation*}
$$

All the projectors are obtained form P_{0}, whose target space is an arbitrary holomorphic vector function $f_{0}(\xi)$, by the recurrence formulas

$$
\begin{equation*}
P_{k-1}=\Pi_{-}\left(P_{k}\right)=\frac{\bar{\partial} P P \partial P}{\operatorname{tr}(\bar{\partial} P P \partial P)}, \quad P_{k+1}=\Pi_{+}\left(P_{k}\right)=\frac{\partial P P \bar{\partial} P}{\operatorname{tr}(\bar{\partial} P P \partial P)} . \tag{153}
\end{equation*}
$$

For the surfaces corresponding to P_{k} the integration is performed explicitly

$$
\begin{equation*}
F_{k}=-i\left(P_{k}+2 \sum_{j=0}^{k-1} P_{j}\right)+i c_{k} \mathbb{I}_{N}, \quad c_{k}=\frac{1}{N}(1+2 k) \tag{154}
\end{equation*}
$$

The inverse formulas

$$
\begin{equation*}
P_{k}=F_{k}^{2}-2 i\left(c_{k}-1\right) F_{k}-c_{k}\left(c_{k}-2\right) \mathbb{I}_{N}, \quad 0 \leq k \leq N-1 . \tag{155}
\end{equation*}
$$

