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Bȩdlewo, Poland (25,09,2016)

1 / 68



Abstract

The Fokas-Gel’fand theorem on the immersion formula of 2D-surfaces is related
to the study of Lie symmetries of an integrable system. A rigorous proof of this
theorem is presented which may help to better understand the immersion
formula of 2D-surfaces in Lie algebras. It is shown, that even under weaker
conditions, the main results of this theorem is still valid. A connection is
established between three different analytic descriptions for immersion
functions of 2D-surfaces, corresponding to the following three types of
symmetries: gauge symmetries of the linear spectral problem, conformal
transformations in the spectral parameter and generalized symmetries of the
integrable system. The theoretical results are applied to the CPN−1 sigma
model and several soliton surfaces associated with these symmetries are
constructed. It is shown that these surfaces are linked by gauge
transformations. The Fokas-Gel’fand procedure can also be adapted for
constructing soliton surfaces associated with integrable ODE’s admitting Lax
representations, and applied to ODE’s for the elliptic and Painlevé P1 equations.
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Immersion formulas for soliton surfaces

Let us consider an integrable system of PDEs in two independent variables
x1, x2

Ω[u] = 0, (1)

where [u] = (x ,u(n)) ∈ Jn(X × U). Suppose that the system (1) is obtained as
the compatibility of a matrix LSP written in the form

∂αΦ(x1, x2, λ)− Uα([u], λ)Φ(x1, x2, λ) = 0, α = 1,2 (2)

In what follows, we assume that the potential matrices Uα and the wavefunction
Φ can be defined on the extended jet space N = (Jn, λ), where λ is the spectral
parameter. The compatibility condition of the LSP (2), often called the ZCC

D2U1 − D1U2 + [U1,U2] = 0, Dα = ∂α + uk
J,α∂uk

J
, α = 1,2 (3)

which is assumed to be valid for all values of λ, implies (1). The LSP (2) can be
written as

DαΦ([u], λ)− Uα([u], λ)Φ([u], λ) = 0. α = 1,2 (4)

As long as the potential matrices Uα([u], λ) satisfy the ZCC (3), there exists a
group-valued function Φ which satisfies (4) and consequently can be defined
formally on the extended jet space N = (Jn, λ).
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Immersion formulas for soliton surfaces

A. Fokas and I. Gel’fand [1996] looked for a simultaneous infinitesimal
deformation of the LSP (4) which preserved ZCC (3) Ũ1

Ũ2

Φ̃

 =

 U1
U2
Φ

+ ε

 A1
A2
ΦF

+ O(ε2), 0 < ε� 1 (5)

where the matrices Ũ1, Ũ2, A1, A2 and F take values in the Lie algebra g, while
Φ̃ = Φ(I + εF ) belong to the corresponding Lie group G. The infinitesimal
deformation of the ZCC (3) requires that the matrix functions A1 and A2 satisfy

D2A1 − D1A2 + [A1,U2] + [U1,A2] = 0. (6)

The infinitesimal deformation of the LSP (4) implies that the function F satisfies

DαF = Φ−1AαΦ, α = 1,2 (7)

The requirement (6) coincides with the compatibility condition for (7). Fokas and
Gel’fand determined that the necessary condition for the existence of a g-valued
immersion function F of a 2D-surface in g can be expressed in terms of the
matrices Uα and Aα which satisfy IDZCC (6).
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Theorem 1 (Fokas and Gel’fand [1996])

If the matrix functions Uα ∈ g, α = 1,2 and Φ ∈ G of the LSP (4) satisfy the ZCC
(3) and Aα ∈ g are two linearly independent matrix functions which satisfy the
IDZCC,

D2A1 − D1A2 + [A1,U2] + [U1,A2] = 0, (8)

then there exists (up to affine transformations) a 2D-surface with a g-valued
immersion function F ([u], λ) such that the tangent vectors to this surface are
linearly independent and are given by

DαF ([u], λ) = Φ−1Aα([u], λ)Φ, α = 1,2 (9)

The 1st and 2nd fundamental forms of the surface are expressible in terms of
Uα,Aα only. The term integrable surfaces refers to surfaces associated with
integrable GMC eqs.
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Theorem 2 (A Fokas et al [2000], our formulation)
(The main result on the immersion of 2D-surfaces in Lie algebras)

Let the set of scalar functions {uk} satisfy an integrable system of PDEs
Ω[u] = 0. Let the G-valued function Φ([u], λ) satisfy the LSP (4) of g-valued
potentials Uα([u], λ). Let us define two linearly independent g-valued matrix
functions Aα([u], λ) by the equations

Aα([u], λ) = β(λ)DλUα + (DαS + [S,Uα]) + prωRUα. Dλ = ∂λ α = 1,2 (10)

Here β(λ) is an arbitrary scalar function of λ, S = S([u], λ) is an arbitrary
g-valued matrix function defined on the jet space N , ωR = Rk [u]∂uk is the vector
field, written in evolutionary form, of the generalized symmetries of the
integrable PDEs Ω[u] = 0 given by the ZCC (3). Then there exists a 2D-surface
with immersion function F ([u], λ) in the Lie algebra g given by the formula (up to
an additive g-valued constant)

F ([u], λ) = Φ−1 (β(λ)DλΦ + SΦ + prωRΦ) , where ωR = Rk [u]∂uk . (11)

Links between the Fréchet derivatives and evolutionary vectors fields are

prωRUα =
DUα
Duj R j , prωRΦ =

DΦ

Duj R
j , prωR = ωR + DJRk∂uk

J
. (12)
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Theorem 2 (A Fokas et al [2000], our formulation)
(The main result on the immersion of 2D-surfaces in Lie algebras)

F ([u], λ) = Φ−1 (β(λ)DλΦ + SΦ + prωRΦ) .

The integrated form of the surface defines a mapping F : N → g and we will
refer to it as the ST immersion formula (when S = 0, ωR = 0)

F ST ([u], λ) = β(λ)Φ−1(DλΦ) ∈ g, (13)

the CD immersion formula (when β = ωR = 0)

F CD([u], λ) = Φ−1S([u], λ)Φ ∈ g, (14)

or the FG immersion formula (when β = 0,S = 0)

F FG([u], λ) = Φ−1(prωRΦ) ∈ g. (15)
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Immersion formulas for soliton surfaces

Let us consider the case when β = S = 0. The FG immersion function
associated with the generalized symmetries of the integrable PDEs Ω[u] = 0 is

F ([u], λ) = Φ−1 DΦ
Duj R j = Φ−1(prωRΦ) ∈ g, α = 1,2

DαF ([u], λ) = Φ−1Aα([u], λ)Φ, Aα([u], λ) = DUα
Duj R j = prωRUα ∈ g,

(16)

Let us discuss the validity of the FGFI (16). A vector field written in evolutionary
form ωR defined on the jet space N

ωR = Rk [u]
∂

∂uk , prωR = Rk [u]
∂

∂uk +
(

DJRk [u]
) ∂

∂uk
J

is a generalized symmetry of the ZCC (3) iff

prωR(D2U1 − D1U2 + [U1,U2]) = D2(prωRU1)− D1(prωRU2)
+[prωRU1,U2] + [U1,prωRU2] = 0 (17)

whenever Ω[u] = D2U1 −D1U2 + [U1,U2] = 0. The expression (17) is equivalent
to the IDZCC

D2A1 − D1A2 + [A1,U2] + [U1,A2] = 0, Aα = prωRUα, α = 1,2 (18)
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Immersion formulas for soliton surfaces

since

[Dα,prωR] = 0, prωR = Rk [u]
∂

∂uk +
(

DJRk [u]
) ∂

∂uk
J

α = 1,2 (19)

The Fréchet derivative of Φ with respect to uk in the direction of Rk can be
expressed through the prolongation of ωR , i.e. (DΦ/Duk )Rk =prωRΦ. Hence

F = Φ−1 DΦ

Duk Rk = Φ−1(prωRΦ) (20)

Differentiating (20) and using the LSP (4) we get

DαF = Dα

(
Φ−1 DΦ

Duk Rk
)

= Φ−1
[
−Uα

DΦ

Duk Rk + Dα

(
DΦ

Duk Rk
)]

(21)
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Immersion formulas for soliton surfaces

Making use of the relations (19) and (20), we can write the 2nd term in (21) as

Dα

(
DΦ

Duk Rk
)

= Dα(prωRΦ) = prωR(DαΦ) (22)

Using the identity

prωR(DαΦ) = prωR(UαΦ) + prωR(DαΦ− UαΦ) (23)

we determine that the 2nd term in (23) is not necessarily zero.
This term vanishes iff the vector field ωR is also a symmetry of the LSP (4) in the
sense that

prωR (DαΦ− UαΦ) = 0, whenever DαΦ− UαΦ = 0. (24)

Let us assume that (24) holds. Then from (22) we get

prωR(DαΦ) = prωR(UαΦ) = (prωRUα)Φ + Uα(prωRΦ)

=

(
DUα
Duk Rk

)
Φ + Uα

(
DΦ

Duk Rk
)
.

(25)
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Immersion formulas for soliton surfaces

Substituting (25) into (21) and using (18) we obtain the tangent vectors DαF in
the form postulated by Theorem 1

DαF = Φ−1
[
−Uα

(
DΦ

Duk Rk
)

+

(
DUα
Duk Rk

)
+ Uα

(
DΦ

Duk Rk
)

Φ

]
= Φ−1

(
DUα
Duk Rk

)
Φ = Φ−1(prωRUα)Φ = Φ−1Aα([u], λ)Φ

(26)

Thus, under the condition that ωR is also a symmetry of the LSP (4), there exists
a 2D-surface with g-valued immersion function given by

F = Φ−1(prωRΦ) ∈ g. (27)

Hence the FG immersion formula is applicable in its original form.
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Immersion formulas for soliton surfaces

Proposition 1: If the vector field ωR is a generalized symmetry of the ZCC
associated with Ω[u] = 0 and if two linearly independent g-valued matrix
functions are defined by the equations

Aα = prωRUα + (prωR(DαΦ− UαΦ))Φ−1, α = 1,2, (28)

then there exists an immersion function F of a 2D-surface which is governed by
the formula (up to an additive g-valued constant)

F ([u], λ) = Φ−1(prωRΦ) ∈ g, (29)

consistent with the tangent vectors

DαF = Φ−1{(prωRUα)Φ + prωR(DαΦ− UαΦ)}. (30)

Proof. The IDZCC

D2A1 − D1A2 + [A1,U2] + [U1,A2] = 0

are exactly the compatibility equation for (30) with Aα given by (28) and so the
immersion function F exists and is given by (29), up to an additive g-valued
constant.

�
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Application of the method

The construction of soliton surfaces requires three terms for an explicit
representation of the immersion function F ∈ g:

1. An LSP DαΦ− Uα([u], λ)Φ = 0, α = 1,2 for the integrable PDE.
2. A generalized symmetry ωR = Rk [u]∂uk of the integrable PDE.
3. A solution Φ of the LSP associated with the soliton solution of the integrable

PDE.
Note that item 1 is always required. In its presence, even without one of the
remaining two objects, we can obtain an immersion function F .
1. When a solution Φ of the LSP is unknown, the geometry of the surface F can
be obtained using the non-degenerate Killing form on the Lie algebra g. The
2D-surface with the immersion function F can be interpreted as a
pseudo-Riemannian manifold.
2. When the generalized symmetries ωR of the integrable PDE are unknown but
we know a solution Φ of the LSP then we can define the 2D-soliton surface
using the gauge transformation and the λ-invariance of the ZCC

F = Φ−1(β(λ)DλΦ + SΦ), (31)
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Application of the method

Equation (31) is consistent with the tangent vectors

DαF = β(λ)Φ−1(DλUα) + Φ−1(DαS + [S,Uα])Φ. (32)

In all cases, the tangent vectors and the unit normal vector to a 2D-surface
expressed in terms of matrices A1,A2 ∈ g are

DαF = Φ−1AαΦ ∈ g, N =
Φ−1[A1,A2]Φ

( ε2 tr[A1,A2]2)1/2 ∈ g, ε = ±1 (33)

Aα = β(λ)(DλUα)+(DαS+[S,Uα])+prωRUα+(prωR(DαΦ−UαΦ))Φ−1. α = 1,2
(34)

The first and second fundamental forms are given by

I = gijdxidxj , II = bijdxidxj , i = 1,2 (35)

where
gij =

ε

2
εtr(AiAj ) bij =

ε

2
tr((DjAi + [Ai ,Uj ])N), ε = ±1. (36)
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Application of the method

This gives the following expressions for the mean and Gaussian curvatures

H = 1
∆

{
tr(A2

2)tr((D1A1 + [A1,U1])N)
−8tr(A1A2)tr((D2A1 + [A1,U2])N)
+tr(A2

1)tr((D2A2 + [A2,U2])N)
}
,

K = 1
∆ {tr((D1A1 + [A1,U1])N)
·tr((D2A2 + [A2,U2])N)

−2tr2((D2A1 + [A1,U2])N)
}
,

∆ = tr(A2
1)tr(A2

2)− 4tr(A1A2),

(37)

which are expressible in terms of Uα and Aα only.
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Conformal symmetries and gauge transformations

Proposition 2: A symmetry of the ZCC (3) of the LSP associated with an
integrable system Ω[u] = 0 is a λ-conformal symmetry iff there exists a g-valued
matrix function (gauge) S1 = S1([u], λ) which is a solution of the system of
PDEs

DαS1 + [S1,Uα] = β(λ)DλUα. α = 1,2 (38)

Outline of the proof. (⇒) The linearly independent matrices

Aα([u], λ) = β(λ)DλUα([u], λ) ∈ g, α = 1,2 (39)

associated with the λ-conformal symmetry of the ZCC (3) satisfy the IDZCC

D2A1 − D1A2 + [A1,U2] + [U1,A2] = 0 (40)

and the corresponding ST immersion function is

F ST ([u], λ) = β(λ)Φ−1DλΦ ∈ g, (41)
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Conformal symmetries and gauge transformations

with linearly independent tangent vectors

DαF ST = β(λ)Φ−1(DλUα)Φ, α = 1,2. (42)

Any g-valued matrix function can be written as the adjoint group action on its Lie
algebra. This implies the existence of a matrix function S1([u], λ) ∈ g for which
the STIF (41) is the CDIF, i.e.

F CD([u], λ) = Φ−1S1([u], λ)Φ ∈ g, (43)

with tangent vectors

DαF CD = Φ−1(DαS1 + [S1,Uα])Φ, α = 1,2. (44)

By comparing the tangent vectors (42) and (44) we obtain the system of PDEs
(38).The system (38) is a solvable one since

β(λ)D2(DλU1)− β(λ)D1(DλU2)− [β(λ)DλU2 − [S1,U2],U1]− [S1,D2U1]
+[β(λ)DλU1 − [S1,U1],U2] + [S1,D1U2] = 0,

(45)
is identically satisfied whenever the ZCC (3) and the system of PDEs (38) hold.
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Conformal symmetries and gauge transformations

So if we can find a gauge S1([u], λ) which satisfies the system of PDEs (38),
then the STIF (41) can always be represented by a gauge.

(⇐) Conversely, comparing the immersion formulas (41) with (43) we find a
linear matrix equation for Φ

DλΦ =
1

β(λ)
S1([u], λ)Φ. (46)

If the gauge S1([u], λ) is known, then by solving (46) we can determine Φ and
obtain the STIF for 2D-soliton surfaces. Hence, the STIF (41) is equivalent to
the CDIF (43) for the gauge S1, which satisfies the system of PDEs (38),

DαS1 + [S1,U2] = β(λ)DλUα, α = 1,2 �
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Generalized symmetries and gauge transformations

Proposition 3: A vector field ωR = Rk [u]∂uk is a generalized symmetry of the
ZCC (3) associated with Ω[u] = 0 iff there exists a g-valued matrix function
(gauge) S2 = S2([u], λ) which is a solution of the system of PDEs

DαS2 + [S2,Uα] = prωRUα + (prωR(DαΦ− UαΦ)) Φ−1. α = 1,2 (47)

Outline of the proof. (⇒) An evolutionary vector field ωR is a generalized
symmetry of the ZCC (3) iff

prωR(D2U1 − D1U2 + [U1,U2]) = 0, (48)

whenever
D2U1 − D1U2 + [U1,U2] = 0. (49)

Eq (48) is equivalent to the IDZCC (6), with two linearly independent matrices

Aα([u], λ) = prωRUα + (prωR(DαΦ− UαΦ))Φ−1 ∈ g, α = 1,2 (50)

which identically satisfy the IDZCC

D2A1 − D1A2 + [A1,U2] + [U1,A2] = 0.
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Generalized symmetries and gauge transformations

An integrated form of the FGIF associated with the vector field ωR and the
tangent vectors are given by are given by

F FG([u], λ) = Φ−1(prωRΦ) ∈ g, DαF FG([u], λ) = Φ−1Aα([u], λ)Φ. (51)

Aα([u], λ) = prωRUα + (prωR(DαΦ− UαΦ))Φ−1

Any g-valued matrix function can be written as the adjoint group action on its Lie
algebra. This implies the existence of a matrix function S2([u], λ) ∈ g, for which
the FGIF (51) is the CDFI

F CD([u], λ) = Φ−1S2([u], λ)Φ ∈ g, (52)

with tangent vectors

DαF CD = Φ−1(DαS2 + [S2,Uα])Φ, α = 1,2. (53)

21 / 68



Generalized symmetries and gauge transformations

By comparing the tangent vectors (51) and (44) we obtain the system of PDEs
(47). The system (47) is a solvable one, since

[S2,D2U1 − D1U2] + [[S2,U1],U2]− [[S2,U2],U1] = 0, (54)

which is identically satisfied whenever the ZCC (3) and (47) hold. So if one can
find a gauge S2 which satisfies (47), then the FGIF (51) can be represented by
a gauge.
(⇐) Conversely, comparing the immersion formulas (51) and (43) we find

prωRΦ = S2([u], λ)Φ (55)

If the gauge S2 is known, then by solving (55) we can determine Φ and obtain
the FGIF for 2D-surfaces. Hence, the FGIF (51) is equivalent to the CDIF for the
gauge S2, which satisfies the system of PDEs (47)

DαS2 + [S2,Uα] = prωRUα + (prωR(DαΦ− UαΦ))Φ−1.

�
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The Sym-Tafel immersion formula versus the
Fokas-Gel’fand immersion formula

Proposition 4: Suppose that the gauges S1 and S2 are the two g-valued matrix
functions which are solutions of the systems of PDEs

DαS1 + [S1,Uα] = β(λ)DλUα, α = 1,2,

DαS2 + [S2,Uα] = prωRUα + (prωR(DαΦ− UαΦ)) Φ−1,
(56)

respectively.
If the gauge S2 is a non-singular matrix then there exists a matrix (S1 · S−1

2 )
which defines a mapping from the FG immersion formula (51) to the ST
immersion formula (41)

DλΦ =
1

β(λ)
(S1 · S−1

2 )(prωRΦ). (57)

Alternatively, if the gauge S1 is a non-singular matrix, then their exists a matrix
(S2 · S−1

1 ) which defines a mapping from the ST immersion formula (41) to the
FG immersion formula (51)

prωRΦ = β(λ)(S2 · S−1
1 )(DλΦ). (58)
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The Sym-Tafel immersion formula versus the
Fokas-Gel’fand immersion formula

β(λ)(DλΦ) = S1S−1
2 (prωRΦ) (57)

Proof. Equation (57) is obtained by eliminating the wavefunction Φ from the
right-hand side of equations

β(λ)DλΦ = S1Φ, prωRΦ = S2Φ, (59)

respectively. So the link between the immersion functions F ST and F FG exists,
up to a g-valued constant gauge. �
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The Sym-Tafel immersion formula versus the
Fokas-Gel’fand immersion formula

Φ ∈ G
PPPPPPPPPPPq

��
��

��
��

��1S1 ∈ g

S2 ∈ g

F ST = β(λ)Φ−1(DλΦ) ∈ g

F FG = Φ−1(prωRΦ) ∈ g

S1 ◦ S−1
2

6

?

S2 ◦ S−1
1

Figure: Representation of the relations between the wavefunction Φ ∈ G and the
g-valued ST and FG formulas for immersions of 2D-soliton surfaces.

S1 = β(λ)(DλΦ)Φ−1, S2 = (prωRΦ)Φ−1 (60)

To conclude, in all three cases we give explicit expressions for 2D-soliton
surfaces immersed in the Lie algebra g and demonstrate that one such surface
can be transformed to another one through a gauge.
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The CPN−1 sigma model and soliton surfaces
Consider the CPN−1 model in terms of a rank-one Hermitian projector P

[∂+∂−P,P] = ∅ ∂± = 1
2 (∂1 ± i∂2)

P2 = P† = P, trP = 1 ∂1 = ∂ξ1 , ∂2 = ∂ξ2

(61)

We assume that the model is defined on the Riemann sphere S2 = C ∪ {∞}
and that its action functional is finite. There exist raising and lowering operators
Π± of solutions of (61) and any solution can be expressed as a raising operator
acting on the holomorphic solution

Π±(P) =


(∂±P)P(∂∓P)

tr(∂±PP∂∓P)
for (∂±P)P(∂∓P) 6= ∅

∅ for (∂±P)P(∂∓P) = ∅

Π−(Pk ) = Pk−1, Π+(Pk ) = Pk+1,

N−1∑
j=0

Pj = IN , Pk Pj = δkjPk

The generalized Weierstrass formula for immersion (GWFI) of 2D-surfaces in
su(N) is defined by

Fk (ξ, ξ̄) = i
∫
γ

(−[∂Pk ,Pk ]dξ + [∂̄Pk ,Pk ]d ξ̄) ∈ g, 0 ≤ k ≤ N − 1. (62)
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The CPN−1 sigma model and soliton surfaces

The LSP is given by

∂αΦk = Uαk Φk , Uαk =
2

1± λ
[∂αPk ,Pk ], (U1k )† = −U2k , 0 ≤ k ≤ N − 1

(63)
(where α = 1,2 stands for ±) with solution Φ = Φ([P], λ) which goes to the
identity matrix IN as λ→∞

Φ = IN +
4λ

(1− λ)2

k−1∑
j=0

Pj −
2

1− λ
Pk ∈ SU(N), λ = it , t ∈ R (64)

For the surfaces corresponding to the projectors Pk , the integration of the GWFI
is performed explicitly

Fk = −i

Pk + 2
k−1∑
j=0

Pj

+ ick IN ∈ su(N), ck =
2k + 1

N
, (65)

and satisfies the algebraic conditions

[Fk − ick IN ][Fk − i(ck − 1)IN ][Fk − i(ck − 2)IN ] = 0,
N−1∑
k=0

(−1)k Fk = 0. (66)
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The CPN−1 sigma model and soliton surfaces

We express the model in terms of elements of the su(N) algebra instead of Pk

θk ≡ i
(

Pk −
1
N
IN

)
∈ su(N) (67)

with algebraic restriction

θk · θk = −i
(2− N)

N
θk +

(1− N)

N2 IN ⇔ P2
k = Pk . (68)

The Euler-Lagrange equations become (for simplicity we drop the index k )

Ωj [θ] =
[
(∂2

1 + ∂2
2)θ, θ

]j
= 0, j = 1, ...,N2 − 1 (69)

where [·, ·]j denotes the coefficients of the j th basis element ej for the su(N)
algebra. The potential matrices Uα expressed in terms of θ are

U1 =
−2

1− λ2 ([∂1θ, θ]− iλ[∂2θ, θ]) ∈ su(N), λ = it , t ∈ R

U2 =
−2

1− λ2 (iλ[∂1θ, θ] + [∂2θ, θ]) ∈ su(N).

(70)
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The CPN−1 sigma model and soliton surfaces

Expressing the wavefunction Φ in terms of θ ∈ su(N), we get

Φ([θ], λ) = IN +
4λ

(1− λ)2

N∑
j=0

Πj
−(θ)− 2

1− λ

(
1
N
IN − iθ

)
∈ SU(N) (71)

Π−(θ) =
∂̄θ(E − iθ)∂θ

tr(∂̄θ(E − iθ)∂θ)
, Π+(θ) =

∂θ(E − iθ)∂̄θ

tr(∂θ(E − iθ)∂̄θ)
, E =

1
N
IN , (72)

For any functions f and g, the E-L eqs (69) and its LSP (63) (with the potential
matrix (70)) admit the conformal symmetries

ωCi =
[
f (ξi )∂1θ

j + g(ξi )∂2θ
j
] ∂

∂θj , i = 1,2. (73)

The vector fields ωCi are related to the fields

ηCi = (∂i Φ
j )
∂

∂Φj + (∂iU j
α)

∂

∂U j
α

, i = 1,2 (74)

which are confomal symmetries of the LSP (63). The integrated form of the
surface is given by the FG formula

F ([θ], λ) = Φ−1 (f (ξ1)U1 + g(ξ2)U2) Φ ∈ su(N). (75)29 / 68



Soliton surfaces associated with the CP1 sigma model

The simplest solutions of the CPN−1 model constitute the Veronese sequence

f =

(
1,
(

N − 1
1

)1/2

z, ...,
(

N − 1
r

)1/2

z r , ..., zN−1

)
, Pk =

fk ⊗ f †

f †k fk
,

z = x + iy ∈ C, fk+1 = (IN − Pk )∂fk , 0 ≤ k ≤ N − 1. (76)
The only solutions for which the action of the CP1 (N = 2) model is finite are
holomorphic P0 and antiholomorphic P1 projectors.

P0 =
f0⊗f†0
f†0 f0

= 1
1+|z|2

(
1 z̄
z |z|2

)
, f0 = (1, z), k = 0

P1 =
f1⊗f†1
f†1 f1

= 1
1+|z|2

(
|z|2 −z̄
−z 1

)
, f1 = (I2 − P0)∂f0, k = 1

(77)

The integrated forms of the surfaces are given by

F0 = i( 1
2 I2 − P0) = i

1+|z|2

( 1
2 (|z|2 − 1) −z̄
−z 1

2 (1− |z|2)

)
∈ su(2),

F1 = −i(P1 + 2P0) + 3i
2 I2 = F0.

(78)
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Soliton surfaces associated with the CP1 sigma model

The potential matrices Uαk become

U10 = U11 = 2
(λ+1)(1+|z|2)2

(
−z̄ −z̄2

1 z̄

)
, λ = it , k = 0,

U20 = U21 = 2
(λ−1)(1+|z|2)2

(
−z 1
−z2 z

)
, t ∈ R, k = 1,

(U1k )† = −U2k .

(79)

The SU(2)-valued soliton wavefunction Φk in the LSP take the forms

Φ0 = 1
1+|z|2

(
−i+t+(i+t)|z|2

t−i
−2i z̄
t−i

−2iz
t+i

i+t+(t−i)|z|2
t+i

)
, k = 0,

Φ1 = 1
1+|z|2

 1+t2+(t+i)2|z|2
(t−i)2

2(1−it)z̄
(t−i)2

−2i(t−i)z
(t+i)2

1+t2+(t−i)2|z|2
(t+i)2

 , k = 1.

(80)

Let us consider separately four different analytic descriptions for the immersion
functions of 2D-surfaces in su(2) which are related to four different types of
symmetries.
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1. The Sym-Tafel formula for immersion (conformal
symmetry in λ)

The ZCC of the CP1 model admits a conformal symmetry in the spectal
parameter λ. The tangent vectors DαF ST

k associated with this symmetry are
given by

DαF ST
k = −iΦ−1

k (DλUαk )Φk , where β(λ) = i , α = 1,2, k = 0,1

are linearly independent. The integrated forms of the 2D-surfaces in su(2) are
given by the ST formula

F ST
0 = −iΦ−1

0 (DλΦ0) = −2
(1+t2)2(1+|z|2)2(

−|z|2[t2 − 3 + |z|2(1 + t2)] z̄[(t + i)2 + |z|2(3 + 2it + t2)]
z[(t − i)2 + |z|2(3− 2it + t2)] |z|2[t2 − 3 + |z|2(t2 + 1)]

)
, k = 0

F ST
1 = −iΦ−1

1 (DλΦ1) = −2
(1+t2)2(1+|z|2)2 k = 1(

−[(t2 + 1)(1 + 2|z|4) + 3|z|2(t2 − 3)] z̄[6it − 5 + t2 + |z|2(7 + 6it + t2)]
z[t2 − 6it − 5 + |z|2(7 + t2 − 6it)] (t2 + 1)(1 + 2|z|4) + 3|z|2(t2 − 3)

)
.

(81)
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1. The Sym-Tafel formula for immersion (conformal
symmetry in λ)

The surfaces F ST
k have positive constant Gaussian and mean curvatures and

are spheres (see Fig. 2a)
K = H = 4. (82)

The su(2)-valued gauges SST
k associated with the STIF F ST

k are

SST
0 = (DλΦ0)Φ−1

0 = −2
1+|z|2

 −|z|2
t2+1

z̄
(t−i)2

z
(t+i)2

|z|2
t2+1

 , k = 0,

SST
1 = (DλΦ1)Φ−1

1 = −2
1+|z|2

 −(1+2|z|2)
t2+1

z̄(t+i)2

(t−i)4

z(t−i)2

(t+i)4
1+2|z|2

t2+1

 , k = 1,

det SST
k 6= 0, trSST

k = 0.

(83)
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1. The Sym-Tafel formula for immersion (conformal
symmetry in λ)

For CP1 model we have (F ST
k )2 + 1

4 I2 = 0, k = 0,1 and F ST
k = −i

∑3
α=1 xαkσα

⇒ x2
1k + x2

2k + x2
3k = 1

4 , spheres. (In what follows we use coordinate notation

(x,y) on a surface) F ST
k =

{
x

1 + x2 + y2 ,
y

1 + x2 + y2 ,
1− x2 − y2

2(1 + x2 + y2)

}
34 / 68



2. The Fokas-Gel’fand formula for immersion (scaling
symmetries)

The surfaces F g
k ∈ su(2) associated with the sclaing symmetries of the CP1

model

ω
g
k = (D1(zU1k ) + z̄(D2U1k )) ∂

∂θ1 + (z(D1U2k ) + D2(z̄U2k )) ∂
∂θ2 , (84)

have integrated form

F g
k = Φ−1

k (zU1k + z̄U2k )Φk , k = 0,1 (85)

(where Uαk is given by eqs (79))The surfaces F g
k also have positive curvatures

K0 = K1 = −4λ2, H0 = H1 = −4iλ, iλ ∈ R. (86)

but are not spheres, since they have boundaries (see Fig. 2b). The su(2)-valued
gauges Sg

k = (prωg
k Φk )Φ−1

k associated with ωg
k are given by

Sg
0 = Sg

1 = 2
(t2+1)(1+|z|2)2

(
2it |z|2 i z̄[i − t + |z|2(t + i)]

z[1− it + |z|2(1 + it)] −2it |z|2
)
,

(87)
where detSg

k 6= 0.
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2. The Fokas-Gel’fand formula for immersion (scaling
symmetries)

A part of ellipsoid: F g
k =

(
x3 − 2x2y + x(y2 − 1)− 2y(1 + y2)

(1 + x2 + y2)2 ,

−2x3 + x2y + y(y2 − 1) + 2x(1 + y2)

(1 + x2 + y2)2 ,
2(x2 + y2)

(1 + x2 + y2)2

)
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3. The Fokas-Gel’fand formula for immersion
(conformal symmetries)

The surfaces associated with the conformal symmetry

ωc
k = −gk (z)∂ − ḡk (z̄)∂̄, gk (z) = 1 + i , (88)

have the integrated forms

F c
k = Φ−1

k (U1k + U2k )Φk , k = 0,1 (89)

where
U10 + U20 = U11 + U21 = 2

(t2+1)(1+|z|2)2(
2z + i(t + i)(z + z̄) −1− it + i z̄2(t + i)
1 + z2 + it(z2 − 1) −[2z + i(t + i)(z + z̄)]

)
.

(90)

The surfaces F c
k have the Euler-Poincaré characters

χk =
−1
π

∫ ∫
S2
∂∂̄ ln [tr(∂Pk · ∂̄Pk )]dx1dx2 = 2 (91)

and K > 0 means that F c
k are homeomorphic to ovaloids (see Fig. 2c).
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3. The Fokas-Gel’fand formula for immersion
(conformal symmetries)

A cardioid surface: F c
k =

(
x2 − 1− 4xy − y2

(1 + x2 + y2)2 , −2(1 + x2 + xy − y2)

(1 + x2 + y2)2 ,

2(2x − y)

(1 + x2 + y2)2

)
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3. The Fokas-Gel’fand formula for immersion
(conformal symmetries)

The su(2)-valued gauges Sc
k associated with ωc

k take the form

Sc
0 = (prωcΦ0)Φ−1

0 = 2
(1+|z|2)2 −i(1−i)(t−i)z+(1+i)(1−it)z̄

t2+1
(1−i)(1+it)+(1+i)(1−it)z̄2

(t−i)2

i(1+i)(t+i)−(1−i)z2(t−i)
(t+i)2

(1−i)(1+it)z+i(1+i)(t+i)z̄
t2+1

 , k = 0

Sc
1 = (prωcΦ1)Φ−1

1 = 2
(1+|z|2)2 −i(1−i)(t−i)z+(1+i)(1−it)z̄

t2+1
(t+i)2[(1−i)(1+it)+(1+i)(1−it)z̄2]

(t−i)4

i(t−i)2[(1+i)(t+i)−(1−i)(t−i)z2]
(t+i)4

(1−i)(1+it)z+i(1+i)(t+i)z̄
t2+1

 , k = 1

(92)

where detSc
k 6= 0.
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4. The Fokas-Gel’fand formula for immersion
(generalized symmetries)

The surfaces associated with the generalized symmetries

ωR
k = (D2

1U1k + D2
2U1k + [D1U1k ,U1k ] + [D2U1k ,U1k ]) ∂

∂θ1

+(D2
1U2k + D2

2U2k + [D2U2k ,U2k ] + [D1U2k ,U2k ]) ∂
∂θ2 , k = 0,1

(93)

(where Uαk is given by eqs (79)) have the integrated form

F FG
k = Φ−1(prωR

k Φk ) = Φ−1
k (D1U1k + D2U2k )Φk . (94)

consistent with the tangent vectors

D1F FG
k = Φ−1

k (prωR
k U1k )Φk

= Φ−1
k (D2

1U1k + D2
2U1k + [D1U1k ,U1k ] + [D2U1k ,U1k ])Φk ,

D2F FG
k = Φ−1

k (prωR
k U2k )Φk

= Φ−1
k (D2

1U2k + D2
2U2k + [D2U2k ,U2k ] + [D1U2k ,U2k ])Φk .

(95)

The surfaces F FG
k have K > 0 and χ = 2 and they are homeomorphic to

ovaloids.
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4. The Fokas-Gel’fand formula for immersion
(generalized symmetries)

The su(2)-valued gauges SFG
k associated with ωR

k have the form

SFG
k = (prωR

k Φk )Φ−1
k = D1U1k + D2U2k = 4

(t2+1)(1+|z|2)3(
−z2(1 + it) + z̄2(1− it) z̄3(1− it) + z(it + 1)
−iz3(t − i) + i z̄(t + i) z2(1 + it)− z̄2(1− it)

)
, k = 0,1

(96)

where det SFG
k 6= 0.
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4. The Fokas-Gel’fand formula for immersion
(generalized symmetries)

F FG
k =

(
−x3 − 6x2y − x(1 + 3y2) + 2y(1 + y2)

(1 + x2 + y2)3 ,

2x3 + y + 3x2y − y3 + x(2− 6y2)

(1 + x2 + y2)3 , −2(x2 − 4xy − y2)

(1 + x2 + y2)3

)
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Links between FG and ST immersion formulas

The mapping
Mk = SST

k (SFG
k )−1, k = 0,1

from the FG immersion formulas to the ST immersion formulas are given by

M0 = SST
0 (SFG

0 )−1 = 1
2(t2+1)( −2iz3(t−i)+z̄[(t+i)2+|z|2(t2+1)]

z(t−i)
z[(t+i)2+(t2+1)|z|2+2(1+it)]

t−i

− [z3(1+t2)+2z̄(1−it)+z(t−i)2]
t+i

z(t−i)2+|z|2z(t2+1)+2i z̄3(t+i)
z̄(t+i)

)
,

M1 = SST
1 (SFG

1 )−1 = i
2|z|2 −(1+2|z|2)

t2+1
(i+t)2z̄
(t−i)4

z(t−i)2

(t+i)4
1+2|z|2

t2+1


·
(

z2(it + 1) + z̄2(it − 1) −z(it + 1) + z̄3(it − 1)
z3(it + 1) + (1− it)z̄ −z2(1 + it) + (1− it)z̄2

)
,

where det Mk 6= 0.
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Links between FG and ST immersion formulas

Conversely, there exist mappings from the STIF to the FGIF

M−1
0 = SFG

0 (SST
0 )−1 = 2

(1+|z|2)3(
(t−i)2z+(1+t2)|z|2z+2(it−1)z̄3

(i+t)z̄
2(1+it)z2+(i+t)2z̄2+(1+t2)|z|2z̄2

(i−t)z
(t−i)2z2+(1+t2)|z|2z2+2(1−it)z̄2

(i+t)z̄
−2(1+it)z3+(i+t)2z̄+(1+t2)|z|2z̄

(t−i)z

)
, k = 0

M−1
1 = SFG

1 (SST
1 )−1 = 2

(t2+1)(1+|z|2)3(1+4|z|2)(
−z2(1 + it) + z̄2(1− it) z̄3(1− it) + z(1 + it)
−z3(1 + it) + z̄(it − 1) z2(1 + it)− z̄2(1− it)

)
· (1 + 2|z|2)(1 + it)(i + t) −i z̄(i+t)4

(t−i)2

−iz(t−i)4

(i+t)2 (1 + 2|z|2)(1− it)(−i + t)

 k = 1

where det M−1
k 6= 0.
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Applications to ODE’s written in the Lax form 1.

Consider an ODE in the independent variable x

∆[u] ≡ ∆(x ,u,ux ,uxx , ...) = 0, (97)

which admits a Lax pair with potential matrices L(λ, [u]), M(λ, [u]) taking values
in a Lie algebra g. These matrices satisfy

DxM + [M,L] = 0, whenever ∆[u] = 0. (98)

This Lax representation (98) can be regarded as the compatibility condition of
an LSP for a wavefunction Φ taking values in the Lie group G

Dx Φ(λ, y , [u]) = L(λ, [u])Φ(λ, y , [u]),

Dy Φ(λ, y , [u]) = M(λ, [u])Φ(λ, y , [u]).
(99)

Here, we have introduced an auxiliary variable y in the LSP for which

Dy L = Dy M = 0. (100)
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ODE’s for elliptic equations

Consider a second-order autonomous ODE

uxx =
1
2

f ′(u), f ′(u) =
d
du

f (u)⇔ ux = ε
√

f (u), ε = ±1, (101)

with solution ∫
du

ε
√

f (u)
= x − x0. (102)

The ODE (101) admits a Lax pair with potential matrices

L =
1
2

[
0 f ′(u)

u+λ −
f (u)−g(λ)

(u+λ)2

1 0

]
, M =

[
ux − f (u)−g(λ)

u+λ

u + λ −ux

]
∈ sl(2,R).

(103)
The choice

det M = −g(λ) = f (−λ) (104)

make L and M polynomial in u, whenever f (u) is polynomial in u.
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Wavefunctions

The solutions of the wavefunction which satisfy the LSP are denoted by

Φ =

[
Φ11 Φ12
Φ21 Φ22

]
∈ SL(2,R) (105)

with components

Φk1 = c1Φk+ + c2Φk−, k = 1,2
Φk2 = c3Φk+ + c4Φk−, ci ∈ R, i = 1,2,3,4

(106)

and where

Φ1± =
±
√

g(λ) + ux√
u + λ

Ψ±, Φ2± =
√

u + λΨ±,

Ψ± = exp

[
±
√

g(λ)

(
y + ε

∫
du

2(u + λ)
√

f (u)

)] (107)

Here the choice of ε comes from ux = ε
√

f (u). The requirement that
Φ ∈ SL(2,R) implies

c1 = c2 =
1
2
, c3 = −c4 = −1

2

√
g(λ). (108)
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Symmetries of ODE’s associated with elliptic functions

Consider a vector field in the evolutionary representation

vQ = Q[u]
∂

∂u
(109)

which is a generalized symmetry of the ODE (101) iff

prvQ(uxx −
1
2

f ′(u)) = 0, whenever uxx −
1
2

f ′(u) = 0,

prvQ = Q[u]
∂

∂u
+ DJQ

∂

∂uJ

(110)

holds. The determining equation for Q is

D2
x Q − 1

2
f ′′(u)Q = 0, whenever uxx −

1
2

f ′(u) = 0. (111)

The following characteristics Qi ’s are solutions of the determining equation

Q1 = ux Q4 = uux + xu − 1
4 x2ux

Q2 = ux
∫

f (u)3/2du Q5 = u2 − 3
2 xuux − 3

4 x2u + 1
8 x3ux

Q3 = xux + γu when f (u) = c1 + c2ul , l = −2(1 + 1
γ ), γ, ci ∈ R

(112)
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Case Q2 = ux
∫

f (u)−3/2du, f (u)-arbitrary function

VQ2 = Q2[u]
∂

∂u
, Q2[u] = ux

∫
f (u)−3/2du

is a symmetry of an elliptic equation (101) but it is not a symmetry of the LSP
since the action of prVQ2 on the LSP

prvQ2 (Dx Φ− LΦ) = ux

2(u+λ)3/2
√

f (u)
A,

prvQ2 (Dy Φ−MΦ) = ux√
u+λ
√

f (u)
A, A =

[
−(Ψ+ + Ψ−) g(λ)−1/2(Ψ+ −Ψ−)

0 Ψ+ + Ψ−

]
(113)

does not vanish for all solutions Φ of the LSP. Thus, there exists an
sl(2,R)-valued immersion function

F Q2 = Φ−1(prvQ2 Φ) ∈ sl(2,R) (114)

with tangent vectors

DxF Q2 = Φ−1 [(prvQ2L)Φ + prvQ2 (Dx Φ− LΦ)] ,

Dy F Q2 = Φ−1 [(prvQ2M)Φ + prvQ2 (Dy Φ−MΦ)] ,
(115)
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Surfaces associated with Jacobi elliptic functions

u2
x = (1− u2)(k1 + k2u2), k ′2 + k2 = 1, 0 ≤ k , k ′ ≤ 1. (116)

k1 k2 Solution of (116)
1 −k2 sn(x , k)

k ′2 k2 cn(x , k)
−k ′2 1 dn(x , k)

Choosing
g(λ) = f (−λ) = (1− λ2)(k1 + k2λ

2) (117)

the matrices L and M become

L =
1
2

[
0 −3k2u2 + 2λk2u + k1 − k2 − k2λ

2

1 0

]
∈ sl(2,R)

M =

[
ux (u − λ)[k2(u2 + λ2) + k1 − k2]

u + λ −ux

]
∈ sl(2,R)

(118)
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Wavefunction and surfaces

Φ =

 (
√

g(λ)−ux )Ψ+−(
√

g(λ)+ux )Ψ−

2
√

u+λ

(
√

g(λ)+ux Ψ−−(
√

g(λ)−ux )Ψ+)

2
√

g(λ)
√

u+λ√
u+λ(Ψ++Ψ−)

2

√
u+λ(Ψ−−Ψ+)

2
√

g(λ)

 (119)

where Π is an elliptic integral of the 3rd kind

Ψ± = exp
[√

g(λ)(y + Γ(u, λ))
]
,

Γ(u, λ) =
1

λ
√

k1
Π(u,

1
λ2 ,

√
−k2

k1
)

− 1
2
√

g(λ)
tanh−1

(
(k2 − k1 − 2k2λ

2)u2 + (k2 − k1)λ2 + 2k1

2
√

g(λ)
√

(1− u2)(k1 + k2u2)

)
+ c0

(120)
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2D-surface F = Φ−1(prvQΦ)

Surface F ∈ sl(2,R) for u = sn(x , k) with g(λ) < 0, λ = 1.2 and x , y ∈ [−9,9].
The axes indicate the components of the immersion function F in the ei basis of
sl(2,R). F admits a simple pole
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Application to ODE’s written in the Lax form 2

Suppose now that the dependent functions xk (t) depend only on t . The
matrices Uα are functions on the jet space defined by t and xk (t) and the other
independent variable, which here takes the form of a spectral parameter λ. In
this case, the ZCC is equivalent to a system of ODE’s

Ω[x ] = DλU1([x ], λ)− DtU2([x ], λ) + [U1([x ], λ),U2([x ], λ)] = 0, (121)

where
Dt =

∂

∂t
+ xt

∂

∂x
+ xtt

∂

∂t
+ ..., Dλ =

∂

∂λ
(122)

The theoretical considerations are illustrated via surfaces associated with the
Painlevé P1 equation.
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Painlevé P1 surfaces

Here, we present surfaces associated with the Painlevé equation P1

Ω[x ] = xtt − 6x2 − t = 0 (123)

The LSP for P1 is given in terms of the potential matrices [Jimbo Miwa 1981]

Dt Φ = U1Φ DλΦ = U2Φ

U1 =

[
0 λ+ 2x
1 0

]
, U2 =

[
−xt 2λ2 + 2xλ+ t + 2x2

2(λ− x) xt

]
∈ sl(2R)

(124)
which satisfy the ZCC

Ω[x ] ≡ DλU1 − DtU2 + [U1,U2] = (xtt − 6x2 − t)e1, e1 =

(
0 1
0 0

)
(125)

54 / 68



Painlevé P1 surfaces

Consider the surface F associated with the conformal transformation in the
spectral parameter (the ST formula)

F = Φ−1(DλΦ) ∈ sl(2,R) (126)

The tangent vectors to the surface F are determined via A1,A2

DtF = Φ−1(DλU1)Φ, A1 = DλU1 =

(
0 1
0 0

)
∈ sl(2,R) (127)

DλF = Φ−1(DλU1)Φ, A2 = DλU2 =

(
0 4λ+ 2x
2 0

)
∈ sl(2,R) (128)

The 1st fundamental form associated with the surface F is

I(F ) = 2dtdλ+ 4(x + 2λ)dλ2 (129)

Note that the tangent vector DtF is an isotropic vector.
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Painlevé P1 surfaces

In the moving frame defined by the (nonconstant) wavefunction Φ, the normal to
the surface is constant

N = Φ−1e1Φ ∈ sl(2,R) (130)

and so the image of the surface F , written in this moving frame, lies in a plane.
The 2nd fundamental form and the Gaussian and mean curvatures for F are

II(F ) = −dt2 + 4(x − λ)dtdx + 2(4x2 + 4λx + t − λ2)dλ2

K (F ) = 2(6x2 + t) = xtt

H(F ) = 2(2x + λ)

(131)

Note that the Gaussian curvature does not depend on λ and the sign of the
second derivative of the solution xtt of P1 determines whether the points of F
are hyperbolic, elliptic or parabolic.
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Painlevé P1 surfaces

The umbilic points of F are determined by

H2 − K = 4(2x + λ)2 − 2xt t = 0, xtt = 6x2 + t (132)

which are exactly the curves

λ = −2x ±
(xtt

2

)1/2
(133)

There are no umbilic points in the hyperbolic domain where xtt < 0. (i.e. K < 0){
t = 2(λ2 + x2 + 4λx)
x = −2λ± 1√

2
(6λ2 + t)1/2 (134)

The Laurent series solution of P1 diverge along the curve

2(2x + λ)2 − (6x2 + t) = 0 (135)
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Concluding remarks

1. We have adapted the Fokas-Gel’fand procedure for constructing soliton
surfaces associated with DEs admitting a Lax representation.

2. We have established the connections between three different analytic
descriptions for the immersion functions of 2D-surfaces, derived through
the links between three types of symmetries: gauge symmetries of the
linear spectral problem, conformal transformations in the spectral
parameter and generalized symmetries of the integrable system.

3. We have shown that the immersion formulas associated with these
symmetries can be linked by gauge transformations.

4. The procedure was applied to the CPN−1 sigma model, and for the elliptic
and Painlevé P1 equations.
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Future perspectives

1. To use ODE surfaces to approximate PDE surfaces, using group invariant
solutions of the integrable PDE. To expand general solutions near group
invariant ones through variation of parameters.

2. To use recurrence operators of generalized symmetries of an integrable
nonlinear PDE to obtain recurrence relations for surfaces.

3. To investigate how the integrable characteristics, such as Hamiltonian
structure and conserved quantities, are manifest in the surfaces.

4. To employ the variational problem of geometric functionals, i.e. the
Willmore functional interpreted as an action functional

W(F ) =
1
4

∫
Ω

tr(H2)
√

gdξd ξ̄, Ω ⊂ C. (136)

to compute the class of equations which are determining equations for the
surface (the Euler-Lagrange equations).

5. To develop computer techniques for the visualization of mathematical
formulas. A visual image of a surface reflecting the behavior of a solution
can be of interest, providing some clues about the properties of this
surface, otherwise hidden in some implicit mathematical expressions.
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Thank you for your attention.
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Appendix A1: Preliminaries on classical and
generalized symmetries

X 3 x = (x1, ..., xp), U 3 u = (u1, ...,uq) are spaces of independent and
dependent variables, respectively.
Jn = Jn(X × U) is the n-jet space over X × U.
The coordinates of Jn are given by xα, uk and

uk
J =

∂nuk

∂xj1 ...∂xjn
(137)

J = (j1, ..., jn) is a symmetric multi-index. On Jn we define a system of PDEs

Ωµ(x ,u(n)) = 0. µ = 1, ...,m (138)

A vector field v tangent to J0 = X × U is denoted by

v = ξα(x ,u)∂α + ϕk (x ,u)∂k , where ∂α =
∂

∂xα
, ∂k =

∂

∂uk (139)

pr(n)v on Jn is a truncated formal series

pr(n)v = ξα∂α + ϕk
J
∂
∂uk

J
.

ϕk
J = DJRk + ξαuk

J,α, Rk = ϕk − ξαuk
α,

(140)



Appendix A1: Preliminaries on classical and
generalized symmetries

The total derivatives are

Dα = ∂α + uk
J,α

∂

∂uk
J
, α = 1, . . . ,p (141)

and Rk are the so-called characteristics of the vector field v . The representation
of v can be written equivalently as

v = ξαDα + ωR , ωR = Rk ∂

∂uk (142)

The vector field v is a classical Lie point symmetry of a nondegenerate system
of PDEs (138) iff its n-th prolongation of v is such that

pr(n)vΩµ(x ,u(n)) = 0, µ = 1, ...,m (143)

whenever Ωµ(x ,u(n)) = 0, µ = 1, ...,m are satisfied. Every solution of PDEs can
be represented by its graph, uk = θk (x), which is a section of J0.



Appendix A1: Preliminaries on classical and
generalized symmetries

If the graph is preserved by G (equivalently, vectors form g are tangent to the
graph) then the related solution is said to be G-invariant

Ω(x , θ(n)) = 0, ϕk
a(x , θ)− ξαa (x , θ)θk

,α = 0, a = 1, ..., r (144)

A generalized vector field is expressed in terms of the characteristics

ωR = Rk [u]
∂

∂uk where [u] = (x ,u(n)) ∈ Jn(X × U). (145)

The prolongation of an evolutionary vector field ωR is given by

prωR = ωR + DJRk ∂

∂uk
J
. (146)

A vector field ωR is a generalized symmetry of a nondegenerated system of
PDEs (138) iff

prωRΩµ(x ,u(n)) = 0, (147)

whenever Ω(x ,u(n)) = 0 and its differential consequences are satisfied.



Appendix A2: Surfaces associated with CPN−1 models

The surfaces are defined by a contour integral

F (ξ, ξ̄) = i
∫
γ

(−[∂P,P]dξ + [∂̄P,P]d ξ̄). (148)

The Euler-Lagrange eqs are

∂[∂̄P,P] + ∂̄[∂P,P] = 0. (149)

The action integral is∫
Ldξd ξ̄ = tr(∂P · ∂̄P), with P2 = P, P† = P. (150)

Eq (149) ensures that (148) is an exact differential. The mapping of Ω ⊂ S2 into
a set of su(N) matrices

Ω 3 (ξ, ξ̄) 7→ Fk (ξ, ξ̄) ∈ su(N) ' RN2−1, 0 ≤ k ≤ N − 1 (151)

is the GWFI of 2D surfaces in RN2−1.



Appendix A2: Surfaces associated with CPN−1 models

The target spaces of the projectors Pk are 1D vector functions fk (ξ, ξ̄) ∈ CN ,
constituting an orthogonal basis in CN

Pk =
fk ⊗ f †k

f †k fk
, Pk Pl = δklPk (no summation),

N−1∑
k=0

Pk = IN . (152)

All the projectors are obtained form P0, whose target space is an arbitrary
holomorphic vector function f0(ξ), by the recurrence formulas

Pk−1 = Π−(Pk ) =
∂̄PP∂P

tr(∂̄PP∂P)
, Pk+1 = Π+(Pk ) =

∂PP∂̄P
tr(∂̄PP∂P)

. (153)

For the surfaces corresponding to Pk the integration is performed explicitly

Fk = −i(Pk + 2
k−1∑
j=0

Pj ) + ick IN , ck =
1
N

(1 + 2k). (154)

The inverse formulas

Pk = F 2
k − 2i(ck − 1)Fk − ck (ck − 2)IN , 0 ≤ k ≤ N − 1. (155)
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