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Main definition

Definition

A bi-Lie structure is a triple (g, [, ], [, ]′), where g is a vector space and
[, ], [, ]′ are two Lie brackets on g which are compatible, i.e. so that
[, ] + [, ]′ is a Lie bracket.

Example

Let g = gl(n,K), A ∈ g be a fixed matrix. Put

[x ,A y ] = xAy − yAx .

Then (g, [, ], [,A ]) is a bi-Lie structure, ([, ] the standard commutator).

Main motivating example

Let g = so(n,K), A ∈ Symm(n,K), a fixed symmetric matrix. Then
(g, [, ], [,A ]) is a bi-Lie structure.
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Motivation I: bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair η1, η2 ∈ Γ(
∧2 TM)

such that η1, η2, η1 + η2 are Poisson.

Hierarchy of mechanisms (by complexity of structures):

constant+constant (rather not interesting)

constant+linear (proved to be powerful, eg. “argument translation”)

linear+linear (topic of present talk)

linear+quadratic (eg. argument translation of quadratic bracket
towards “vanishing direction”)

etc.
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Motivation I: bihamiltonian structures

Semisimple case

Applications of the so(n,R) bi-Lie structure:

Manakov top (n-dimensional free rigid body), here A is diagonal, the
“inertia tensor” of the body (Bolsinov 1992)

Klebsh–Perelomov case (Bolsinov 1992)

Another bi-Lie structure on so(n,R)× so(n,R)

Generalized Steklov–Lyapunov systems (Bolsinov–Fedorov 1992)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov ∼ 2004–2006

Matrix integrable ODE’s
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Motivation II: classical R-matrix formalism

Classical R-matrix

Let g be a Lie algebra and R : g→ g a linear operator. Put

R [x , y ] := [Rx , y ] + [x ,Ry ].

We say that R is a classical R-matrix if R [, ] is a Lie bracket.

Standard classical R-matrix

Let g = g+ ⊕ g−, where g± are subalgebras. Then R := P+ − P− is a
classical R-matrix called standard.

Basic example of the standard classical R-matrix

Let g be a Lie algebra, g̃ := g[λ, 1/λ]. Then g̃ =
⊕

n∈Z gn, where gn is the
space of homogeneous Laurent polynomials of degree n and
g+ :=

⊕
n≥0 gn, g− :=

⊕
n<0 gn are subalgebras in g̃.
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Motivation II: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra (g̃, [, ]) with a decomposition g̃ =
⊕

n∈Z gn is quasigraded of
degree 1 if [gi , gj ] ⊂ gi+j ⊕ gi+j+1

Quasigraded Lie algebras → standard classical R-matrix

One checks that g+ :=
⊕

n≥0 gn, g− :=
⊕

n<0 gn are subalgebras.

Bi-Lie structures → quasigraded Lie algebras

Let (g, [, ]0, [, ]1) be a bi-Lie structure, g̃ := g[λ, 1/λ]. Put [, ] = [, ]0 +λ[, ]1
and extend this bracket to g̃. Then g̃ is quasigraded of degree 1.
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Motivation II: classical R-matrix formalism

Applications

Landau-Livshits PDE (the so(n,R) bi-Lie structure, n = 3, Holod
1987)

Other finite- and infinite-dimensional systems (Skrypnyk,
Golubchik–Sokolov, Yanovski)



Known classification results: the Kantor–Persits theorem

Useful notation

Let g be a Lie algebra and N : g→ g a linear operator. Put

[x , y ]N := [Nx , y ] + [x ,Ny ]− N[x , y ].

Definition

Let {[, ]v}v∈V be a n-dimensional vector space of Lie structures on a
vector space g. It is called irreducible if the Lie algebras (g, [, ]v ) do not
have common nontrivial ideals and closed if

∀x ∈ g ∀v ,w ∈ V ∃u ∈ V : [, ]vad wx := [, ]u, ad wx(y) = [x , y ]w .
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Known classification results: the Kantor–Persits theorem

Kantor–Persits 1988 (announced only)

The list of irreducible closed vector spaces of Lie structures:

g = so(n,K), {[,A ]}A∈Symm(n,K)

g = sp(n,K), {[,A ]}A∈m(n,K)

several nonsemisimple cases

here
[X ,A Y ] := XAY − YAX ,

sp(n,K) = {X ∈ gl(2n,K) | XJ + JXT = 0} the symplectic Lie algebra,
m(n,K) := {X ∈ gl(2n,K) | XJ − JXT = 0} its orthogonal complement in
gl(2n,K) w.r.t. “trace form”



Known classification results: the Odesskii–Sokolov theorem

Odesskii–Sokolov 2006

Classification of “bi-associative structures” (·, ◦) on gl(n,K) =⇒ Examples
of bi-Lie structures on gl(n,K) (which do not restrict to sl(n,K))



Semisimple bi-Lie structures and their examples

Definition

Say that a bi-Lie structure B := (g, [, ], [, ]′) is semisimple if (g, [, ]) is
semisimple.

Known examples of semisimple bi-Lie structures

KP1 (so(n,C), [, ], [,A ]) (Kantor–Persits 1988)

KP2 (sp(n,C), [, ], [,A ]) (Kantor–Persits 1988)

GS1 Let (g, [, ]) be semisimple. There exists a bi-Lie structure related to
any Zn-grading g = g0 ⊕ · · · ⊕ gn−1 on (g, [, ]) and to decomposition
of the subalgebra g0 = g1

0 ⊕ g2
0 to two subalgebras

(Golubchik–Sokolov 2002)

P Let (g, [, ]) be semisimple. There exists a bi-Lie structure related to
any parabolic subalgebra g0 ⊂ g (P 2006)

GS2 Examples on sl(3,C), so(4,C) related to Z2 × Z2-gradings
(Golubchik–Sokolov 2002)



Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g, [, ]) be a Lie algebra, [, ]′ a bilinear bracket.

[, ]′ “compatible” with [, ] ⇐⇒ [, ]′ is a 2-cocycle on (g, [, ])

In particular, if (g, [, ], [, ]′) is a semisimple bi-Lie str., then
[, ]′ = [, ]W = [W ·, ·] + [·,W ·]−W [·, ·] for some W : g→ g

(Magri–Kosmann-Schwarzbach) [, ]N is a Lie bracket for some
N : g→ g ⇐⇒ TN(·, ·) := [N·,N·]− N[·, ·]N is a 2-cocycle on (g, [, ])

In particular, (g, [, ], [, ]′) is a semisimple bi-Lie str. ⇐⇒ [, ]′ = [, ]W
and TW (·, ·) = [·, ·]P , where P : g→ g is another linear operator.
Moreover, the operators W ,P are defined up to adding of inner
differentiations ad x.

TN(X ,Y ) := [NX ,NY ]− N([NX ,Y ] + [X ,NY ]− N[X ,Y ])

= [PX ,Y ] + [X ,PY ]− P[X ,Y ] (MI)



Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g, [, ]) be a Lie algebra, [, ]′ a bilinear bracket.

[, ]′ “compatible” with [, ] ⇐⇒ [, ]′ is a 2-cocycle on (g, [, ])

In particular, if (g, [, ], [, ]′) is a semisimple bi-Lie str., then
[, ]′ = [, ]W = [W ·, ·] + [·,W ·]−W [·, ·] for some W : g→ g

(Magri–Kosmann-Schwarzbach) [, ]N is a Lie bracket for some
N : g→ g ⇐⇒ TN(·, ·) := [N·,N·]− N[·, ·]N is a 2-cocycle on (g, [, ])

In particular, (g, [, ], [, ]′) is a semisimple bi-Lie str. ⇐⇒ [, ]′ = [, ]W
and TW (·, ·) = [·, ·]P , where P : g→ g is another linear operator.
Moreover, the operators W ,P are defined up to adding of inner
differentiations ad x.

TN(X ,Y ) := [NX ,NY ]− N([NX ,Y ] + [X ,NY ]− N[X ,Y ])

= [PX ,Y ] + [X ,PY ]− P[X ,Y ] (MI)



Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g, [, ]) be a Lie algebra, [, ]′ a bilinear bracket.

[, ]′ “compatible” with [, ] ⇐⇒ [, ]′ is a 2-cocycle on (g, [, ])

In particular, if (g, [, ], [, ]′) is a semisimple bi-Lie str., then
[, ]′ = [, ]W = [W ·, ·] + [·,W ·]−W [·, ·] for some W : g→ g

(Magri–Kosmann-Schwarzbach) [, ]N is a Lie bracket for some
N : g→ g ⇐⇒ TN(·, ·) := [N·,N·]− N[·, ·]N is a 2-cocycle on (g, [, ])

In particular, (g, [, ], [, ]′) is a semisimple bi-Lie str. ⇐⇒ [, ]′ = [, ]W
and TW (·, ·) = [·, ·]P , where P : g→ g is another linear operator.
Moreover, the operators W ,P are defined up to adding of inner
differentiations ad x.

TN(X ,Y ) := [NX ,NY ]− N([NX ,Y ] + [X ,NY ]− N[X ,Y ])

= [PX ,Y ] + [X ,PY ]− P[X ,Y ] (MI)



Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g, [, ]) be a Lie algebra, [, ]′ a bilinear bracket.

[, ]′ “compatible” with [, ] ⇐⇒ [, ]′ is a 2-cocycle on (g, [, ])

In particular, if (g, [, ], [, ]′) is a semisimple bi-Lie str., then
[, ]′ = [, ]W = [W ·, ·] + [·,W ·]−W [·, ·] for some W : g→ g

(Magri–Kosmann-Schwarzbach) [, ]N is a Lie bracket for some
N : g→ g ⇐⇒ TN(·, ·) := [N·,N·]− N[·, ·]N is a 2-cocycle on (g, [, ])

In particular, (g, [, ], [, ]′) is a semisimple bi-Lie str. ⇐⇒ [, ]′ = [, ]W
and TW (·, ·) = [·, ·]P , where P : g→ g is another linear operator.
Moreover, the operators W ,P are defined up to adding of inner
differentiations ad x.

TN(X ,Y ) := [NX ,NY ]− N([NX ,Y ] + [X ,NY ]− N[X ,Y ])

= [PX ,Y ] + [X ,PY ]− P[X ,Y ] (MI)



Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure B call W such that [, ]′ = [, ]W a
leading operator for B and P a primitive for W . They satisfy the main
identity (MI)

TW (·, ·) = [·, ·]P

Example

Let g = g0 ⊕ · · · ⊕ gn−1 be a Zn-grading on g. Put
W |gi = iIdgi , i = 0, . . . , n − 1 and P|gi = 1

2 i(n − i)Idgi . One checks MI
directly.

Example

Let g = g1 ⊕ g2 (sum of subalgebras). Put W |gi = ωi Idgi , i = 1, 2, where
ω1,2 are any scalars. Then TW = 0 (so put P = 0 in the MI). Important
example: g simple, g1 a parabolic subalgebra and g2 its “complement”.
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Principal leading operator

Definition

Let g be a semisimple Lie algebra. Then there exists a direct
decomposition End(g) = ad g⊕ C , where C = (ad g)⊥ is the orthogonal
complement to ad g ⊂ End(g) w.r.t. the trace form. An operator
W ∈ End(g) is called principal if W ∈ C .

Theorem
1 There exists a unique principal operator W with the property

[, ]′ = [, ]W . Call it the principal (leading) operator of a bi-Lie
structure (g, [, ], [, ]′).

2 If W is the principal operator, there exists a unique operator P
primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For so(n,K) bi-Lie structure we have W = (1/2)(LA + RA) (operators
of left and right multiplication by A).
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Significance of the principal leading operator

Definition

We say that bi-Lie structures (g, [, ], [, ]′) and (g, [, ], [, ]′′) are strongly
isomorphic (isomorphic) if there exists an automorphism of the Lie
algebra (g, [, ]) sending the bracket [, ]′ to [, ]′′ (to a linear combination
α1[, ] + α2[, ]′′).

Theorem

Let (g, [, ], [, ]′) and (g, [, ], [, ]′′) be two semisimple bi-Lie structures and let
W ′,W ′′ be the corresponding principal operators. Then the bi-Lie
structures are strongly isomorphic if and only if there exists an
automorphism φ of the Lie algebra (g, [, ]) with the property
φ ◦W ′ = W ′′ ◦ φ.

In particular, classification of semisimple bi-Lie structures up to
isomorphism ⇐⇒ classification of principal operators satisfyting MI up to
action of automorphisms, rescaling, and adding scalar operators
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The pencil of Lie algebras and the times

Switch to K = C

Bi-Lie structure (g, [, ], [, ]′) =⇒ Pencil of Lie brackets
(g, [, ]t), [, ]t := [, ]′ − t[, ], t ∈ C

Theorem

Let (g, [, ], [, ]′) be a semisimple bi-Lie structure, W its principal operator,
P its symmetric primitive and let B(, ) be the Killing form of (g, [, ]). Then
the Killing form Bt of the Lie algebra (g, [, ]t) is given by the formula

Bt(x , y) = B((W − tI )x , (W − tI )y)− 2B(Px , y), x , y ∈ g,

In particular, kerBt 6= {0} ⇐⇒ det(W ∗W − 2P − t(W +W ∗) + t2I ) = 0.

Definition

The elements of the finite set T := {t ∈ C | kerBt 6= {0}} are called the
times of the bi-Lie structure.
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The central subalgebra

In particular, if t ∈ T , the center zt of the Lie algebra (g, [, ]t) can be
nontrivial.

Theorem
1 The subset zt is a subalgebra in (g, [, ]) for any t ∈ T;

2 zt1 ∩ zt2 = {0} and [zt1 , zt2 ] = 0 if t1 6= t2;

3 in particular, the set z :=
∑

t∈T zt is a subalgebra in (g, [, ]) which is a
direct sum of its ideals zti . Call z the central subalgebra of
(g, [, ], [, ]′). Moreover, z ⊂ kerP.

Examples: (1) (so(6,C), [, ], [,A ]); (2) g = g0 ⊕ · · · ⊕ gn−1

(1)A =



a 0 0 0 0 0
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; (2)z = g0
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Gradings and Main assumption

Definition

Let g =
⊕

i∈Γ gi be a grading of a Lie algebra (g, [, ]), i.e. [gi , gj ] ⊂ gi+j

for any i , j ∈ Γ, Γ an abelian group. We say that a linear operator
W : g→ g preserves the grading if W gi ⊂ gi for any i ∈ Γ.

Theorem

Let (g, [, ], [, ]′) be a semisimple bi-Lie structure and let g =
⊕

i∈Γ gi be a
grading. Then, if the principal operator W : g→ g preserves the grading,
so does its symmetric primitive P.

Main assumption: z ⊃ h

The central subalgebra z contains some Cartan subalgebra h ⊂ g (w.r.t.[, ])
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Gradings and Main assumption

Theorem

The main assumption z ⊃ h is equivalent to the following two conditions

The principal operator W ∈ End(g) preserves the grading

g = h +
∑
α∈R

gα

related to the root decomposition with respect to the Cartan
subalgebra h. In other words for some ωα ∈ C

W |gα = ωαIdgα ,W h ⊂ h.

The operator W |h is diagonalizable.



Consequences of the Main assumption I

Theorem

Recall W |gα = ωαIdgα ,W h ⊂ h,P|gα = παIdgα , πα = π−α, P|z = 0. Then
z is a reductive in g Lie subalgebra and for any root α

there exist two times t1,α, t2,α (possibly equal) such that
gα ⊂ kerBt1,α ∩ kerBt2,α . They are the solutions of the quadratic
equation (t − ωα)(t − ω−α)− 2πα = 0. Moreover, if
Tα := {t1,α, t2,α}, then Tα = T−α.

σα = (1/2)(t1,α + t2,α), κα = ±
√

((t1,α − t2,α)/2)2 − 2πα, where
σα := (1/2)(ωα + ω−α), κα := (1/2)(ωα − ω−α).

(W − t1,αI )(W − t2,αI )Hα = 0, here Hα ∈ h, α ∈ R, is such that
B(Hα,H) = α(H) for any H ∈ h.

Consequently, W |h is admissible in the following sense: for any root α the
vector Hα ∈ h is either an eigenvector of W , or a sum of two eigenvectors
of W .
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Consequences of the Main assumption II

Theorem

Let α, β, γ be roots such that α + β + γ = 0. Then only the following
possibilities can occur (“times selection rules”):

1 either there exist t1, t2, t3 ∈ C such that

Tα = {t1, t2},Tβ = {t2, t3},Tγ = {t3, t1};

2 or there exist t1, t2 ∈ C such that

Tα = Tβ = Tγ = {t1, t2}, t1 6= t2,

Moreover, in Case 1 the following equality holds:

κα + κβ + κγ = 0

and in Case 2:
κα + κβ + κγ = ±(t1 − t2)/2.



Consequences of the Main assumption III

SS bi-Lie structures
1:1⇐⇒ (U, T ), U : h→ h admissible, T a pair diagram

Pair diagrams

T = {Tα}α∈R , Tα = {t1,α, t2,α}, ti ,α ∈ C obeying the “times selection
rules”

Examples:
t1t3

t1t3 t2t3

t1t2 t2t3 t3t3

,
t1t2

t1t2 t1t2

t1t1 t1t2 t1t2

.

Theorem =⇒ two classes of pair diagrams, I and II

Assume that there exist roots α, β, γ such that α + β + γ = 0 and

Tα = Tβ = Tγ = {t1, t2}

for some t1, t2, t1 6= t2. Then Tδ = {t1, t2}, {t1, t1} or {t2, t2} for any δ.
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Examples of bi-Lie structures of Class I

Example

R = dn, roots ±εi ± εj(1 ≤ i < j ≤ n),Uεi = tiεi ,T±εi±εj := {ti , tj}
(KP1, A = diag(t1, t1, . . . , tn, tn)).

R = bn, roots ±εi (1 ≤ i ≤ n),±εi ± εj(1 ≤ i < j ≤ n)Uεi =
tiεi ,T±εi±εj := {ti , tj},T±εi := {ti , (tn+1)} (KP1,
A = diag(t1, t1, . . . , tn, tn, tn+1)).

R = cn, roots ±2εi (1 ≤ i ≤ n),±εi ± εj(1 ≤ i < j ≤ n)Uεi =
tiεi ,T±εi±εj := {ti , tj},T±2εi := {ti , ti} (KP2,A = diag(t1, t1, . . . , tn, tn)).



Examples of bi-Lie structures of Class I

R = an, root basis α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn = εn − εn+1.

a) Put wn := aαn,wn−1 :=
wn + αn−1, . . . ,w1 := w2 + α1,
where a 6= 0, 1, U(wi ) := tiwi ,
T±(εi−εj ) := {ti tj}, if i < j < n + 1
and T±(εi−εn+1) = {ti tn}

t1t3

t1t3 t2t3

t1t2 t2t3 t3t3

(new).

b) Put a = 1 and
T±(εi−εn+1) = {ti (tn+1)}

t1(t4)
t1t3 t2(t4)

t1t2 t2t3 t3(t4)
(new, corresponds to WX = (1/2)(LA + RA)X − Tr((1/2)(LA + RA)X )B,
where X ∈ sl(n + 1),A = diag(t1, t2, . . . , tn+1),B = diag(0, 0, . . . , 0, 1)).

Conjecture

Any bi-Lie structure of Class I is from the list above.

(⇐ classification of specific Z2 × · · · × Z2-gradings)
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Examples of bi-Lie structures of Class II

Example 1

Let g = g0 ⊕ · · · ⊕ gn−1 be a Zn-grading on g related to an inner
automorphism of n-th order, n > 2, and W |gi = iIdgi , i = 0, . . . , n − 1
(GS1 with inner automorphism of n-th order, n > 2).

Example 2

Let g = g̃0 ⊕ g̃1, where g̃0 is a parabolic subalgebra and g̃1 its
“complement” W |g̃i = ωi Idg̃i , ωi arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which g0 is a
Levi subalgebra)

Theorem

Any bi-Lie structure of Class II for g = an is a modification of Example 1
(belongs to GS1).
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Bi-Lie structures of Class II

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to
GS1).

Perspectives

Classification without Main assumption

Nonsemisimple algebras

Invariant Nijenhuis and “weak Nijenhuis” (1,1)-tensors on
homogeneous spaces

Clarification of relations with classical R-matrix formalism
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