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Definition

A bi-Lie structure is a triple (g,[,],[,]’), where g is a vector space and
[,],[,] are two Lie brackets on g which are compatible, i.e. so that
[L]+[,] is a Lie bracket.
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Example
Let g = gl(n,K), A € g be a fixed matrix. Put

[x,ay] = xAy — yAx.

Then (g,[,],[,a]) is a bi-Lie structure, ([,] the standard commutator).
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Let g = gl(n,K), A € g be a fixed matrix. Put
[x.ay] = xAy — yAx.

Then (g,[,],[,a]) is a bi-Lie structure, ([,] the standard commutator).

Main motivating example
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Let g = s0(n,K), A € Symm(n, K), a fixed symmetric matrix. Then
(9,[,],[,a]) is a bi-Lie structure.




Motivation |: bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair 71,72 € T(A® TM)
such that n1,m2,m1 + 12 are Poisson.




Motivation |: bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair 71,72 € T(A® TM)
such that n1,m2,m1 + 12 are Poisson.

Hierarchy of mechanisms (by complexity of structures):

constant+constant (rather not interesting)
constant-+linear (proved to be powerful, eg. “argument translation”)
linear+linear (topic of present talk)

linear+quadratic (eg. argument translation of quadratic bracket
towards ‘“vanishing direction”)

etc.



Motivation |: bihamiltonian structures

Applications of the so(n,R) bi-Lie structure:

@ Manakov top (n-dimensional free rigid body), here A is diagonal, the
“inertia tensor” of the body (Bolsinov 1992)

o Klebsh—Perelomov case (Bolsinov 1992)

Another bi-Lie structure on so(n,R) x so(n,R)

o Generalized Steklov—Lyapunov systems (Bolsinov—Fedorov 1992)




Motivation |: bihamiltonian structures

Semisimple case

Applications of the so(n,R) bi-Lie structure:

@ Manakov top (n-dimensional free rigid body), here A is diagonal, the
“inertia tensor” of the body (Bolsinov 1992)

o Klebsh—Perelomov case (Bolsinov 1992)

Another bi-Lie structure on so(n,R) x so(n,R)

o Generalized Steklov—Lyapunov systems (Bolsinov—Fedorov 1992)
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Nonsemisimple case
Works of Golubchik, Odesskii, Sokolov ~ 2004-2006
@ Matrix integrable ODE's




Motivation |l: classical R-matrix formalism

Classical R-matrix

Let g be a Lie algebra and R : g — g a linear operator. Put

R[Xay] = [RX,y] + [X> Ry]‘

We say that R is a classical R-matrix if g[,] is a Lie bracket.




Motivation |l: classical R-matrix formalism

Classical R-matrix
Let g be a Lie algebra and R : g — g a linear operator. Put

R[va] = [RX,y] + [X> Ry]‘

We say that R is a classical R-matrix if g[,] is a Lie bracket.

Standard classical R-matrix
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Let g = g+ & g—, where g1 are subalgebras. Then R := P, — P_is a
classical R-matrix called standard.
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Classical R-matrix

Let g be a Lie algebra and R : g — g a linear operator. Put
rlx,y] = [Rx, y] + [x, Ry].

We say that R is a classical R-matrix if g[,] is a Lie bracket.

Standard classical R-matrix

Let g = g+ & g—, where g1 are subalgebras. Then R := P, — P_is a
classical R-matrix called standard.
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Basic example of the standard classical R-matrix

Let g be a Lie algebra, § := g[A\,1/A]. Then § = P, . 9n, Where g, is the
space of homogeneous Laurent polynomials of degree n and

9+ = D,500n, 9— = D, 9n are subalgebras in §.

| N\
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Motivation |l: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra (g, [,]) with a decomposition § = €, 9, is quasigraded of
degree 1if [g;, ;] C gitj @ Bitjt1




Motivation |l: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra (g, [,]) with a decomposition § = €, 9, is quasigraded of
degree 1if [g;, ;] C gitj @ Bitjt1

Quasigraded Lie algebras — standard classical R-matrix

One checks that g4 := €D,50 9n, 9— := D, 9n are subalgebras.




Motivation |l: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra (g, [,]) with a decomposition § = €, 9, is quasigraded of
degree 1if [g;, ;] C gitj @ Bitjt1

Quasigraded Lie algebras — standard classical R-matrix

One checks that g4 := €D,50 9n, 9— := D, 9n are subalgebras.

Bi-Lie structures — quasigraded Lie algebras

Let (g,[,]o, [, ]1) be a bi-Lie structure, § := g[A\,1/A]. Put [,] =[,Jo+ AL, 1
and extend this bracket to g. Then g is quasigraded of degree 1.




Motivation |l: classical R-matrix formalism

Applications

o Landau-Livshits PDE (the so(n, R) bi-Lie structure, n = 3, Holod
1987)

@ Otbher finite- and infinite-dimensional systems (Skrypnyk,
Golubchik—Sokolov, Yanovski)




Known classification results: the Kantor—Persits theorem

Useful notation
Let g be a Lie algebra and N : g — g a linear operator. Put

[, yIn i= [Nx, ] + [x, Ny] = N[, y].




Known classification results: the Kantor—Persits theorem

Useful notation
Let g be a Lie algebra and N : g — g a linear operator. Put

[, yIn i= [Nx, ] + [x, Ny] = N[, y].

Let {[,]"}vev be a n-dimensional vector space of Lie structures on a
vector space g. It is called irreducible if the Lie algebras (g, [,]") do not

have common nontrivial ideals and closed if

VxegVv,weVIueV:[|[ljw, =[]"ad"x(y) =[x, y]".




Known classification results: the Kantor—Persits theorem

Kantor—Persits 1988 (announced only)

The list of irreducible closed vector spaces of Lie structures:
°g= 50(’77 K)? {[7/4 ]}AESymm(n,K)
°g= ﬁp(nv K)? {[7A ]}AGm(n,K)
@ several nonsemisimple cases
here
[X,a Y] := XAY — YAX,
sp(n,K) = {X € gl(2n,K) | XJ + JXT = 0} the symplectic Lie algebra,

m(n,K) := {X € gl(2n,K) | XJ — JXT = 0} its orthogonal complement in
gl(2n,K) w.r.t. “trace form”

v




Known classification results: the Odesskii—Sokolov theorem

Odesskii—Sokolov 2006

Classification of “bi-associative structures” (-, o) on gl(n, K) = Examples
of bi-Lie structures on gl(n,K) (which do not restrict to sl(n, K))




Semisimple bi-Lie structures and their examples

Say that a bi-Lie structure B := (g, [,],[,]") is semisimple if (g,[,]) is
semisimple.

v

Known examples of semisimple bi-Lie structures

KP1 (so(n,C),[,],[,a]) (Kantor—Persits 1988)
KP2 (sp(n,C),[,],[,a]) (Kantor—Persits 1988)

GS1 Let (g,[,]) be semisimple. There exists a bi-Lie structure related to
any Zp-grading g =go @ --- & gn—1 on (g, [,]) and to decomposition
of the subalgebra go = gfl) @ g% to two subalgebras
(Golubchik=Sokolov 2002)

P Let (g,[,]) be semisimple. There exists a bi-Lie structure related to
any parabolic subalgebra go C g (P 2006)

GS2 Examples on sl(3,C),s0(4,C) related to Zy x Zp-gradings
(Golubchik-Sokolov 2002)




Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g,[,]) be a Lie algebra, [,]' a bilinear bracket.

o [,]' “compatible” with [,] <= [,]" is a 2-cocycle on (g, [,])
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Semisimple bi-Lie structures and operators

Obvious or Easy:

Let (g,[,]) be a Lie algebra, [,]' a bilinear bracket.

o [,]' “compatible” with [,] <= [,]" is a 2-cocycle on (g, [,])

o In particular, if (g,[,],[,]') is a semisimple bi-Lie str., then
LI=Llw=[W-]+][,W]— W]J,] forsome W :g —g

o (Magri-Kosmann-Schwarzbach) [,y is a Lie bracket for some
N:g—g< Tn(,):=[N-,N]— N[, ]y is a 2-cocycle on (g, [,])

o In particular, (g,[,],[,]) is a semisimple bi-Lie str. <= [,]' = [, ]w
and Tw(-,-) =[,*]p, where P : g — g is another linear operator.
Moreover, the operators W, P are defined up to adding of inner
differentiations ad x.

Tn(X,Y) = [NX, NY] = N([NX, Y]+ [X,NY] = N[X, Y])
=[PX,Y]+[X,PY]—P[X,Y] (MI)



Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure B call W such that [,]' = [,]w a
leading operator for B and P a primitive for W. They satisfy the main
identity (MI)

TW(‘, ) = [.7 ']P
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Example

Let g=go D - ® g1 be a Z,-grading on g. Put
W|g, = ildg,,i =0,...,n—1 and P|g, = 2i(n — i)Idg,. One checks Ml
directly.




Semisimple bi-Lie structures: examples of leading operators

Definition
Given a semisimple bi-Lie structure B call W such that [,]' = [,]w a
leading operator for B and P a primitive for W. They satisfy the main
identity (MI)

TW('v ) = [.7 ']P
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Example

Let g=go D - ® g1 be a Z,-grading on g. Put
W|g, = ildg,,i =0,...,n—1 and P|g, = 2i(n — i)Idg,. One checks Ml

directly.
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Example

Let g = g1 @ go (sum of subalgebras). Put W|y, = wildy;, i = 1,2, where
w1 2 are any scalars. Then Ty = 0 (so put P = 0 in the MI). Important
example: g simple, g; a parabolic subalgebra and g, its “complement”.




Principal leading operator

Definition

Let g be a semisimple Lie algebra. Then there exists a direct
decomposition End(g) = ad g @ C, where C = (ad g)= is the orthogonal
complement to ad g C End(g) w.r.t. the trace form. An operator

W € End(g) is called principal if W € C.




Principal leading operator

Definition

Let g be a semisimple Lie algebra. Then there exists a direct
decomposition End(g) = ad g @ C, where C = (ad g)= is the orthogonal
complement to ad g C End(g) w.r.t. the trace form. An operator

W € End(g) is called principal if W € C.
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Theorem
© There exists a unique principal operator W with the property
[, = [,]Jw. Call it the principal (leading) operator of a bi-Lie
structure (g,[,],[,])-
Q If W is the principal operator, there exists a unique operator P
primitive for W which is symmetric w.r.t. the trace form on End(g).

v
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Definition

Let g be a semisimple Lie algebra. Then there exists a direct
decomposition End(g) = ad g @ C, where C = (ad g)= is the orthogonal
complement to ad g C End(g) w.r.t. the trace form. An operator

W € End(g) is called principal if W € C.

Theorem
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© There exists a unique principal operator W with the property
[, = [,]Jw. Call it the principal (leading) operator of a bi-Lie
structure (g,[,],[,])-

Q If W is the principal operator, there exists a unique operator P
primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

| \

For so(n, K) bi-Lie structure we have W = (1/2)(La + Ra) (operators
of left and right multiplication by A).




Significance of the principal leading operator

Definition

We say that bi-Lie structures (g, [,],[,]) and (g, [,],[,]”) are strongly
isomorphic (isomorphic) if there exists an automorphism of the Lie
algebra (g, [,]) sending the bracket [,] to [,]” (to a linear combination

041[,] + a2[7]/l)'
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Definition

We say that bi-Lie structures (g, [,],[,]) and (g, [,],[,]”) are strongly
isomorphic (isomorphic) if there exists an automorphism of the Lie
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W', W" be the corresponding principal operators. Then the bi-Lie
structures are strongly isomorphic if and only if there exists an
automorphism ¢ of the Lie algebra (g,[,]) with the property

po W =W"o0¢.




Significance of the principal leading operator

Definition

We say that bi-Lie structures (g, [,],[,]) and (g, [,],[,]”) are strongly
isomorphic (isomorphic) if there exists an automorphism of the Lie
algebra (g, [,]) sending the bracket [,] to [,]” (to a linear combination

al[’] + a2[7]/l)'

Let (g,[,],[,]) and (g,[,],[,]") be two semisimple bi-Lie structures and let
W', W" be the corresponding principal operators. Then the bi-Lie
structures are strongly isomorphic if and only if there exists an
automorphism ¢ of the Lie algebra (g,[,]) with the property

po W =W"o0¢.

In particular, classification of semisimple bi-Lie structures up to
isomorphism <= classification of principal operators satisfyting M| up to
action of automorphisms, rescaling, and adding scalar operators



The pencil of Lie algebras and the times

Bi-Lie structure (g,[,],[,]') = Pencil of Lie brackets
(9, [7]t)7 [7]t = [:]I —t[,],teC

Theorem

Let (g,[,],[,]') be a semisimple bi-Lie structure, W its principal operator,
P its symmetric primitive and let B(,) be the Killing form of (g, [,]). Then
the Killing form B of the Lie algebra (g, [,]*) is given by the formula

Bt(X7Y) = B((W_ tl)X,(W— tl)y) _2B(PXaY)7 X,y €9,

In particular, ker Bt # {0} <= det(W*W — 2P — t(W + W*) + t?]) = 0.

v



The pencil of Lie algebras and the times

Switch to K = C

Bi-Lie structure (g,[,],[,]') = Pencil of Lie brackets
(9, [7]t)7 [7]t = [:]I —t[,],teC

Theorem

Let (g,[,],[,]') be a semisimple bi-Lie structure, W its principal operator,
P its symmetric primitive and let B(,) be the Killing form of (g, [,]). Then
the Killing form B of the Lie algebra (g, [,]*) is given by the formula

Bt(X7Y) = B((W_ tI)X,(W— tl)y) _2B(PXaY)7 X,y €9,

In particular, ker Bt # {0} <= det(W*W — 2P — t(W + W*) + t21) = 0.

Definition
The elements of the finite set T := {t € C | ker Bt # {0}} are called the
times of the bi-Lie structure.

| \

v




The central subalgebra

In particular, if t € T, the center 3' of the Lie algebra (g, [,]*) can be
nontrivial.

@ The subset 3! is a subalgebra in (g,[,]) forany t € T;

(2] 3t1 ﬂ3t2 = {0} and [3t1,3t2] =0ifty 7& tr,

© in particular, the set 3 ;=" 13" is a subalgebra in (g,[,]) which is a
direct sum of its ideals 3. Call 3 the central subalgebra of
(g,[,1,[,]). Moreover, 3 C ker P.




The central subalgebra

In particular, if t € T, the center 3' of the Lie algebra (g, [,]*) can be
nontrivial.

@ The subset 3! is a subalgebra in (g,[,]) forany t € T;
Q 3t1 ﬂth = {0} and [3t1,3t2] =0ifty 7& to;
© in particular, the set 3 ;=" 13" is a subalgebra in (g,[,]) which is a

direct sum of its ideals 3. Call 3 the central subalgebra of
(g,[,1,[,]). Moreover, 3 C ker P.

(1)A =

O *x ¥ O O O

0
0
0
b
0
0

O O O O oOw




Gradings and Main assumption

Definition

Let g = @, 9i be a grading of a Lie algebra (g,[,]), i.e. [gi,9;] C giy;
for any i,j € I', [ an abelian group. We say that a linear operator

W : g — g preserves the grading if Wg; C g; for any i € I'.
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Gradings and Main assumption

Definition

Let g = @, 9i be a grading of a Lie algebra (g,[,]), i.e. [gi,9;] C giy;
for any i,j € I', [ an abelian group. We say that a linear operator
W : g — g preserves the grading if Wg; C g; for any i € I'.

Let (g,[,].[,]") be a semisimple bi-Lie structure and let g = @, gi be a
grading. Then, if the principal operator W : g — g preserves the grading,
so does its symmetric primitive P.

Main assumption: 3 D b
The central subalgebra 3 contains some Cartan subalgebra h C g (w.r.t.[,])




Gradings and Main assumption

The main assumption 3 D b is equivalent to the following two conditions

@ The principal operator W € End(g) preserves the grading
g=bh+ Z Ja
aER

related to the root decomposition with respect to the Cartan
subalgebra h. In other words for some w, € C

W/, = waldg,, Wh C b.

@ The operator W1y is diagonalizable.




Consequences of the Main assumption |

Recall Wy, = waldy,, Wh C b, Plg, = maldy,, 7o = 7—a, Pl; =0.




Consequences of the Main assumption |

Recall Wy, = waldg,, Wh C b, Plg, = maldg, , Ta = T—a, P|; =0. Then
3 is a reductive in g Lie subalgebra and for any root o




Consequences of the Main assumption |

Recall Wy, = waldg,, Wh C b, Plg, = maldg, , Ta = T—a, P|; =0. Then
3 is a reductive in g Lie subalgebra and for any root o

® there exist two times ti o, t2 o (possibly equal) such that
go C ker Bite N ker B2.o. They are the solutions of the quadratic
equation (t — wq)(t —w_q) — 2mq = 0. Moreover, if
To :={tia,t2a} then Ty = T_,.
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Theorem

Recall Wy, = waldg,, Wh C b, Plg, = maldg, , Ta = T—a, P|; =0. Then
3 is a reductive in g Lie subalgebra and for any root o
® there exist two times ti o, t2 o (possibly equal) such that
go C ker Bite N ker B2.o. They are the solutions of the quadratic
equation (t — wq)(t —w_q) — 2mq = 0. Moreover, if
To :={tia,t2a} then Ty = T_,.

® Oa = (1/2)(t1,a + t2,a)7 Ko = i\/((tl,oz - t2,a)/2)2 - 27Ta, where
Oa = (1/2)(we + w-qa), ka = (1/2)(wq — w—q)-




Consequences of the Main assumption |

Recall Wy, = waldg,, Wh C b, Plg, = maldg, , Ta = T—a, P|; =0. Then
3 is a reductive in g Lie subalgebra and for any root o

® there exist two times ti o, t2 o (possibly equal) such that
go C ker Bite N ker B2.o. They are the solutions of the quadratic
equation (t — wqy)(t —w_q) — 2my = 0. Moreover, if
To :={tia,t2a} then Ty = T_,.

0 00 = (1/2)(t1,a + t2,a), Ko = £/ ((ta — t2,0)/2)? — 27, where
0a = (1/2)(wa + w—qa), ka = (1/2)(wq — w—q)-

o (W —t1o)(W —tral)Hy =0, here H, € h,a € R, is such that
B(Hqa, H) = o(H) for any H € b.




Consequences of the Main assumption |

Recall Wy, = waldg,, Wh C b, Plg, = maldg, , Ta = T—a, P|; =0. Then
3 is a reductive in g Lie subalgebra and for any root o

® there exist two times ti o, t2 o (possibly equal) such that
go C ker Bite N ker B2.o. They are the solutions of the quadratic
equation (t — wq)(t —w_q) — 2mq = 0. Moreover, if
To :={tia,t2a} then Ty = T_,.

0 00 = (1/2)(t1,a + t2,a), Ko = £/ ((ta — t2,0)/2)? — 27, where
0a = (1/2)(wa + w—qa), ka = (1/2)(wq — w—q)-

o (W —t1o)(W —tral)Hy =0, here H, € h,a € R, is such that
B(Hqa, H) = o(H) for any H € b.

Consequently, Wy is admissible in the following sense: for any root « the

vector H, € by is either an eigenvector of W, or a sum of two eigenvectors
of W.

v




Consequences of the Main assumption |l

Let o, B,~ be roots such that a4+ B+~ = 0. Then only the following
possibilities can occur ( “times selection rules” ):

O either there exist t1, tp, t3 € C such that

To ={t1, 2}, Tg = {to, t3}, T, = {t3,t1 };
Q or there exist ty, tp € C such that
o = g = U5 = i, &, i 25 i,
Moreover, in Case 1 the following equality holds:
Ka+kg+ky=0

and in Case 2:

Ka + Kg + Ky = £(t1 — ) /2.
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Consequences of the Main assumption Il

SS bi-Lie structures <= (U, T), U:b — b admissible, 7 a pair diagram J

Pair diagrams

T ={Ta}acr, Ta ={ti,a:t2,a}, tin € C obeying the "times selection
rules”

Examples:
t1t3 t1to
tit3 tts ) tito tito
tito bot3 t3t3 tity tito titp

Theorem = two classes of pair diagrams, | and Il

Assume that there exist roots «, 3,7 such that « + 3+ v =0 and
T, = Tg = T7 = {tl, tz}

for some ty, tp, t1 # to. Then Ts = {t1,tr},{t1, t1} or {2, to} for any J.




Examples of bi-Lie structures of Class |

Example

R =0,, roots *e¢; + Ej(l <i<j< n), Ue; = tje;, T:I:e,':l:e_,- = {t,', tJ}
(KPl, A= diag(tl, t1,...,th, tn)).

R = by, roots %¢€i(1 < i< n), e te(l<i<j<n)Ue =

ti€i, Tete; = {tis tj}, Te; 1= {ti, (tnt1)} (KP1,

A = diag(t1, t1, ..., tn, tn, tht1))-

R = ¢y, roots £2¢;(1 < i< n), e £€(1 <i<j<n)Ue=

ti€i, Teeke; = {ti i}, Taoe; i= {ti, ti} (KP2,A = diag(t1, t1,. .., tn, tn))-

v




Examples of bi-Lie structures of Class |

R = ap, root basis a1 = €1 —€2,a0 =€) —€3,...,0n = €, — €nt1.

a) Put w, 1= aay, w1 :=

Wp+ Qp—1,...,W1 1= Wp + O, ti1t3
where a # 0,1, U(w;) := tiw;, tit3 trt3
Ti(g—o) ={tij}, ifi<j<n+l it tot3 t3t3

and T:l:(Ei*E,H,l) = {titn}
(new).




Examples of bi-Lie structures of Class |

R = a,, root basis a; = €1 — €2, 0 = €2 —€3,...,0p = €5 — €py1.

a) Put w, 1= aay, w1 :=

Wp+ Qp—1,...,W1 1= Wp + O, ti1t3

where a # 0,1, U(w;) := tiw;, tit3 trt3

Ti(g—o) ={tij}, ifi<j<n+l it tot3 t3t3

and T:l:(G,'*E,H,l) = {t,'tn}

(new).

b) Put a=1 and - t(ts) t(t)

T — (t(t 183 2(ta
+(ei—€nt1) { l( n—i—l)} tito tots t3(t4)

(new, corresponds to WX = (1/2)(La + Ra)X — Tr((1/2)(La + Ra)X)B,
where X € sl(n+ 1), A= diag(ty, ta, ..., th+1), B = diag(0,0,...,0,1)).
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R = a,, root basis a; = €1 — €2, 0 = €2 —€3,...,0p = €5 — €py1.

a) Put w, 1= aay, w1 :=

Wp+ Qp—1,...,W1 1= Wp + O, ti1t3

where a # 0,1, U(w;) := tiw;, tit3 trt3

Ti(g—o) ={tij}, ifi<j<n+l it tot3 t3t3

and T:l:(G,'*E,H,l) = {t,'tn}

(new).

b) Put a=1 and - fi(te) t(t)

T — (t(t 183 2(ta
+(ei—€nt1) { l( ﬂ+1)} tito tots t3(t4)

(new, corresponds to WX = (1/2)(La + Ra)X — Tr((1/2)(La + Ra)X)B,
where X € sl(n+ 1), A= diag(ty, ta, ..., th+1), B = diag(0,0,...,0,1)).

Any bi-Lie structure of Class | is from the list above. I

(«= classification of specific Zp x - -+ X Zy-gradings)




Examples of bi-Lie structures of Class Il

Let g=go® - - D gn_1 be a Z,-grading on g related to an inner
automorphism of n-th order, n > 2, and W/|y, = ildg;,i =0,...,n—1
(GS1 with inner automorphism of n-th order, n > 2).
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Let g=go® - - D gn_1 be a Z,-grading on g related to an inner
automorphism of n-th order, n > 2, and W|y, = ildg;,i =0,...,n—1
(GS1 with inner automorphism of n-th order, n > 2).

Example 2

| A\

Let g = go @ g1, where §g is a parabolic subalgebra and g; its
“complement” W|z = wildg,, w; arbitrary (P).
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Let g=go® - - D gn_1 be a Z,-grading on g related to an inner
automorphism of n-th order, n > 2, and W|y, = ildg;,i =0,...,n—1
(GS1 with inner automorphism of n-th order, n > 2).
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| N\

Let g = go @ g1, where §g is a parabolic subalgebra and g; its
“complement” W|z = wildg,, w; arbitrary (P).

Theorem

| \

Any Example 2 is isomorphic to one of the Examples 1 (for which gg is a
Levi subalgebra)
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Example 1

Let g=go® - - D gn_1 be a Z,-grading on g related to an inner
automorphism of n-th order, n > 2, and W|y, = ildg;,i =0,...,n—1
(GS1 with inner automorphism of n-th order, n > 2).

Example 2

| \

Let g = go @ g1, where §g is a parabolic subalgebra and g; its
“complement” W|z = wildg,, w; arbitrary (P).

Theorem

| \

Any Example 2 is isomorphic to one of the Examples 1 (for which gg is a
Levi subalgebra)

Theorem

| \

Any bi-Lie structure of Class Il for g = a, is a modification of Example 1
(belongs to GS1).
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Any bi-Lie structure of Class Il is a modification of Example 1 (belongs to
GS1).
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Any bi-Lie structure of Class Il is a modification of Example 1 (belongs to
GS1).

Perspectives

o Classification without Main assumption
@ Nonsemisimple algebras

@ Invariant Nijenhuis and “weak Nijenhuis” (1,1)-tensors on
homogeneous spaces

o Clarification of relations with classical R-matrix formalism
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