On classification of Lie pencils

50th seminar "Sophus Lie", Bedlewo, 25 September - 1 October 2016

Andriy Panasyuk

Faculty of Mathematics and Computer Science University of Warmia and Mazury Olsztyn, Poland

Based on:

"Compatible Lie brackets: Towards a Classification" Journal of Lie Theory, Volume 24 (2014) 561-623

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{g} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{g} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x_{,A}y] = xAy - yAx.$$

Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure.

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{g} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{g} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_{\mathcal{A}} y] = x \mathcal{A} y - y \mathcal{A} x.$$

Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure.

・ロット 本語 マネ 単マネ 日マ

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{g} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{g} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_{\mathcal{A}} y] = x \mathcal{A} y - y \mathcal{A} x.$$

Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure.

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(\bigwedge^2 TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")

• etc.

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(\bigwedge^2 TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")

etc.

Semisimple case

Applications of the $\mathfrak{so}(n,\mathbb{R})$ bi-Lie structure:

• Manakov top (*n*-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (Bolsinov 1992)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

- Klebsh-Perelomov case (Bolsinov 1992)
- Another bi-Lie structure on $\mathfrak{so}(n,\mathbb{R}) \times \mathfrak{so}(n,\mathbb{R})$
 - Generalized Steklov-Lyapunov systems (Bolsinov-Fedorov 1992)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov \sim 2004–2006

• Matrix integrable ODE's

Semisimple case

Applications of the $\mathfrak{so}(n,\mathbb{R})$ bi-Lie structure:

- Manakov top (*n*-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (Bolsinov 1992)
- Klebsh-Perelomov case (Bolsinov 1992)
- Another bi-Lie structure on $\mathfrak{so}(n,\mathbb{R}) \times \mathfrak{so}(n,\mathbb{R})$
 - Generalized Steklov-Lyapunov systems (Bolsinov-Fedorov 1992)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov \sim 2004–2006

• Matrix integrable ODE's

Motivation II: classical R-matrix formalism

Classical R-matrix

Let \mathfrak{g} be a Lie algebra and $R:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

$$_{R}[x,y] := [Rx,y] + [x,Ry].$$

We say that R is a classical R-matrix if R[,] is a Lie bracket.

Standard classical R-matrix

Let $\mathfrak{g} = \mathfrak{g}_+ \oplus \mathfrak{g}_-$, where \mathfrak{g}_\pm are subalgebras. Then $R := P_+ - P_-$ is a classical *R*-matrix called *standard*.

Basic example of the standard classical *R*-matrix

Let \mathfrak{g} be a Lie algebra, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Then $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, where \mathfrak{g}_n is the space of homogeneous Laurent polynomials of degree n and $\mathfrak{g}_+ := \bigoplus_{n \geq 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras in $\tilde{\mathfrak{g}}$.

Motivation II: classical R-matrix formalism

Classical R-matrix

Let \mathfrak{g} be a Lie algebra and $R:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

$$_{R}[x,y] := [Rx,y] + [x,Ry].$$

We say that R is a classical R-matrix if R[,] is a Lie bracket.

Standard classical R-matrix

Let $\mathfrak{g} = \mathfrak{g}_+ \oplus \mathfrak{g}_-$, where \mathfrak{g}_\pm are subalgebras. Then $R := P_+ - P_-$ is a classical *R*-matrix called *standard*.

Basic example of the standard classical *R*-matrix

Let \mathfrak{g} be a Lie algebra, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Then $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, where \mathfrak{g}_n is the space of homogeneous Laurent polynomials of degree n and $\mathfrak{g}_+ := \bigoplus_{n \geq 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras in $\tilde{\mathfrak{g}}$.

Motivation II: classical R-matrix formalism

Classical R-matrix

Let \mathfrak{g} be a Lie algebra and $R:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

$$_{R}[x,y] := [Rx,y] + [x,Ry].$$

We say that R is a classical R-matrix if R[,] is a Lie bracket.

Standard classical R-matrix

Let $\mathfrak{g} = \mathfrak{g}_+ \oplus \mathfrak{g}_-$, where \mathfrak{g}_\pm are subalgebras. Then $R := P_+ - P_-$ is a classical *R*-matrix called *standard*.

Basic example of the standard classical *R*-matrix

Let \mathfrak{g} be a Lie algebra, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Then $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$, where \mathfrak{g}_n is the space of homogeneous Laurent polynomials of degree n and $\mathfrak{g}_+ := \bigoplus_{n \geq 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras in $\tilde{\mathfrak{g}}$.

Quasigraded Lie algebras

A Lie algebra $(\tilde{\mathfrak{g}}, [,])$ with a decomposition $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$ is quasigraded of degree 1 if $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical *R*-matrix

One checks that $\mathfrak{g}_+:=igoplus_{n>0}\mathfrak{g}_n,\mathfrak{g}_-:=igoplus_{n<0}\mathfrak{g}_n$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $(\mathfrak{g}, [,]_0, [,]_1)$ be a bi-Lie structure, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Put $[,] = [,]_0 + \lambda[,]_1$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1.

(日)

Quasigraded Lie algebras

A Lie algebra $(\tilde{\mathfrak{g}}, [,])$ with a decomposition $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$ is quasigraded of degree 1 if $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical *R*-matrix

One checks that $\mathfrak{g}_+ := \bigoplus_{n \ge 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $(\mathfrak{g}, [,]_0, [,]_1)$ be a bi-Lie structure, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Put $[,] = [,]_0 + \lambda[,]_1$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1.

Quasigraded Lie algebras

A Lie algebra $(\tilde{\mathfrak{g}}, [,])$ with a decomposition $\tilde{\mathfrak{g}} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$ is quasigraded of degree 1 if $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical *R*-matrix

One checks that $\mathfrak{g}_+ := \bigoplus_{n \geq 0} \mathfrak{g}_n, \mathfrak{g}_- := \bigoplus_{n < 0} \mathfrak{g}_n$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $(\mathfrak{g}, [,]_0, [,]_1)$ be a bi-Lie structure, $\tilde{\mathfrak{g}} := \mathfrak{g}[\lambda, 1/\lambda]$. Put $[,] = [,]_0 + \lambda[,]_1$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1.

Applications

Landau-Livshits PDE (the so(n, ℝ) bi-Lie structure, n = 3, Holod 1987)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Other finite- and infinite-dimensional systems (Skrypnyk, Golubchik–Sokolov, Yanovski)

Useful notation

Let \mathfrak{g} be a Lie algebra and $N:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

 $[x, y]_N := [Nx, y] + [x, Ny] - N[x, y].$

Definition

Let $\{[,]^{\nu}\}_{\nu \in V}$ be a *n*-dimensional vector space of Lie structures on a vector space \mathfrak{g} . It is called *irreducible* if the Lie algebras $(\mathfrak{g}, [,]^{\nu})$ do not have common nontrivial ideals and *closed* if

 $\forall x \in \mathfrak{g} \ \forall v, w \in V \ \exists u \in V : [,]_{\mathrm{ad}^{w}x}^{v} := [,]^{u}, \mathrm{ad}^{w}x(y) = [x, y]^{w}.$

Useful notation

Let \mathfrak{g} be a Lie algebra and $N:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

 $[x, y]_N := [Nx, y] + [x, Ny] - N[x, y].$

Definition

Let $\{[,]^{\nu}\}_{\nu \in V}$ be a *n*-dimensional vector space of Lie structures on a vector space \mathfrak{g} . It is called *irreducible* if the Lie algebras $(\mathfrak{g}, [,]^{\nu})$ do not have common nontrivial ideals and *closed* if

$$\forall x \in \mathfrak{g} \ \forall v, w \in V \ \exists u \in V : [,]_{\mathrm{ad}^{w}x}^{v} := [,]^{u}, \mathrm{ad}^{w}x(y) = [x, y]^{w}.$$

Kantor–Persits 1988 (announced only)

The list of irreducible closed vector spaces of Lie structures:

•
$$\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), \{[A,A]\}_{A \in \mathrm{Symm}(n, \mathbb{K})}$$

•
$$\mathfrak{g} = \mathfrak{sp}(n, \mathbb{K}), \{[,A]\}_{A \in \mathfrak{m}(n, \mathbb{K})}$$

several nonsemisimple cases

here

$$[X_{\mathcal{A}} Y] := XAY - YAX,$$

 $\mathfrak{sp}(n, \mathbb{K}) = \{X \in \mathfrak{gl}(2n, \mathbb{K}) \mid XJ + JX^T = 0\}$ the symplectic Lie algebra, $\mathfrak{m}(n, \mathbb{K}) := \{X \in \mathfrak{gl}(2n, \mathbb{K}) \mid XJ - JX^T = 0\}$ its orthogonal complement in $\mathfrak{gl}(2n, \mathbb{K})$ w.r.t. "trace form"

Odesskii-Sokolov 2006

Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{gl}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{gl}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{sl}(n, \mathbb{K})$)

Say that a bi-Lie structure $\mathcal{B} := (\mathfrak{g}, [,], [,]')$ is semisimple if $(\mathfrak{g}, [,])$ is semisimple.

Known examples of semisimple bi-Lie structures

- KP1 $(\mathfrak{so}(n,\mathbb{C}),[,],[,A])$ (Kantor–Persits 1988)
- KP2 $(\mathfrak{sp}(n,\mathbb{C}),[,],[,A])$ (Kantor-Persits 1988)
- GS1 Let $(\mathfrak{g}, [,])$ be semisimple. There exists a bi-Lie structure related to any \mathbb{Z}_n -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ on $(\mathfrak{g}, [,])$ and to decomposition of the subalgebra $\mathfrak{g}_0 = \mathfrak{g}_0^1 \oplus \mathfrak{g}_0^2$ to two subalgebras (Golubchik–Sokolov 2002)
 - P Let (g, [,]) be semisimple. There exists a bi-Lie structure related to any parabolic subalgebra $g_0 \subset g$ (P 2006)
- $\begin{array}{l} \mathsf{GS2} \ \mathsf{Examples on } \mathfrak{sl}(3,\mathbb{C}), \mathfrak{so}(4,\mathbb{C}) \ \mathsf{related to} \ \mathbb{Z}_2\times\mathbb{Z}_2 \mathsf{-}\mathsf{gradings} \\ & (\mathsf{Golubchik}\mathsf{-}\mathsf{Sokolov} \ 2002) \end{array}$

- $\bullet~[,]'~$ "compatible" with $[,] \Longleftrightarrow [,]'$ is a 2-cocycle on $(\mathfrak{g},[,])$
- In particular, if $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str., then $[,]' = [,]_W = [W \cdot, \cdot] + [\cdot, W \cdot] - W[\cdot, \cdot]$ for some $W : \mathfrak{g} \to \mathfrak{g}$
- (Magri–Kosmann-Schwarzbach) $[,]_N$ is a Lie bracket for some $N : \mathfrak{g} \to \mathfrak{g} \iff T_N(\cdot, \cdot) := [N \cdot, N \cdot] - N[\cdot, \cdot]_N$ is a 2-cocycle on $(\mathfrak{g}, [,])$
- In particular, (g, [,], [,]') is a semisimple bi-Lie str. ⇐⇒ [,]' = [,]_W and T_W(·,·) = [·,·]_P, where P : g → g is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations ad x.

$$T_N(X, Y) := [NX, NY] - N([NX, Y] + [X, NY] - N[X, Y])$$

= [PX, Y] + [X, PY] - P[X, Y] (MI)

- $\bullet~[,]'~$ "compatible" with $[,] \Longleftrightarrow [,]'$ is a 2-cocycle on $(\mathfrak{g},[,])$
- In particular, if $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str., then $[,]' = [,]_W = [W \cdot, \cdot] + [\cdot, W \cdot] - W[\cdot, \cdot]$ for some $W : \mathfrak{g} \to \mathfrak{g}$
- (Magri–Kosmann-Schwarzbach) $[,]_N$ is a Lie bracket for some $N : \mathfrak{g} \to \mathfrak{g} \iff T_N(\cdot, \cdot) := [N \cdot, N \cdot] - N[\cdot, \cdot]_N$ is a 2-cocycle on $(\mathfrak{g}, [,])$
- In particular, (g, [,], [,]') is a semisimple bi-Lie str. ⇐⇒ [,]' = [,]_W and T_W(·,·) = [·,·]_P, where P : g → g is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations ad x.

$$T_N(X, Y) := [NX, NY] - N([NX, Y] + [X, NY] - N[X, Y])$$

= [PX, Y] + [X, PY] - P[X, Y] (MI)

- $\bullet~[,]'~$ "compatible" with $[,] \Longleftrightarrow [,]'$ is a 2-cocycle on $(\mathfrak{g},[,])$
- In particular, if $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str., then $[,]' = [,]_W = [W \cdot, \cdot] + [\cdot, W \cdot] - W[\cdot, \cdot]$ for some $W : \mathfrak{g} \to \mathfrak{g}$
- (Magri–Kosmann-Schwarzbach) $[,]_N$ is a Lie bracket for some $N : \mathfrak{g} \to \mathfrak{g} \iff T_N(\cdot, \cdot) := [N \cdot, N \cdot] N[\cdot, \cdot]_N$ is a 2-cocycle on $(\mathfrak{g}, [,])$
- In particular, (g, [,], [,]') is a semisimple bi-Lie str. ⇐⇒ [,]' = [,]_W and T_W(·,·) = [·,·]_P, where P : g → g is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations ad x.

$$T_N(X, Y) := [NX, NY] - N([NX, Y] + [X, NY] - N[X, Y])$$

= [PX, Y] + [X, PY] - P[X, Y] (MI)

- $\bullet~[,]'~$ "compatible" with $[,] \Longleftrightarrow [,]'$ is a 2-cocycle on $(\mathfrak{g},[,])$
- In particular, if $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str., then $[,]' = [,]_W = [W \cdot, \cdot] + [\cdot, W \cdot] - W[\cdot, \cdot]$ for some $W : \mathfrak{g} \to \mathfrak{g}$
- (Magri–Kosmann-Schwarzbach) $[,]_N$ is a Lie bracket for some $N : \mathfrak{g} \to \mathfrak{g} \iff T_N(\cdot, \cdot) := [N \cdot, N \cdot] N[\cdot, \cdot]_N$ is a 2-cocycle on $(\mathfrak{g}, [,])$
- In particular, $(\mathfrak{g}, [,], [,]')$ is a semisimple bi-Lie str. $\iff [,]' = [,]_W$ and $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$, where $P : \mathfrak{g} \to \mathfrak{g}$ is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations $\operatorname{ad} x$.

$$T_N(X, Y) := [NX, NY] - N([NX, Y] + [X, NY] - N[X, Y])$$
$$= [PX, Y] + [X, PY] - P[X, Y] \quad (MI)$$

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]' = [,]_W$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

 $T_W(\cdot,\cdot)=[\cdot,\cdot]_P$

Example

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks MI directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \omega_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\omega_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]' = [,]_W$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

 $T_W(\cdot,\cdot)=[\cdot,\cdot]_P$

Example

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks MI directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \omega_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\omega_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]' = [,]_W$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

 $T_W(\cdot,\cdot)=[\cdot,\cdot]_P$

Example

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks MI directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \omega_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\omega_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the orthogonal complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the orthogonal complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property

 [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the orthogonal complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property

 [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on End(g).

Example

For $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]'' (to a linear combination $\alpha_1[,] + \alpha_2[,]'')$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]'' (to a linear combination $\alpha_1[,] + \alpha_2[,]'')$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]'' (to a linear combination $\alpha_1[,] + \alpha_2[,]'')$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfying MI up to action of automorphisms, rescaling, and adding scalar operators

The pencil of Lie algebras and the times

Switch to $\mathbb{K}=\mathbb{C}$

Bi-Lie structure $(\mathfrak{g}, [,], [,]') \Longrightarrow$ Pencil of Lie brackets $(\mathfrak{g}, [,]^t), [,]^t := [,]' - t[,], t \in \mathbb{C}$

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure, W its principal operator, P its symmetric primitive and let B(,) be the Killing form of $(\mathfrak{g}, [,])$. Then the Killing form B^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ is given by the formula

$$B^t(x,y) = B((W-tI)x,(W-tI)y) - 2B(Px,y), \ x,y \in \mathfrak{g},$$

In particular, ker $B^t \neq \{0\} \iff \det(W^*W - 2P - t(W + W^*) + t^2I) = 0.$

Definition

The elements of the finite set $T := \{t \in \mathbb{C} \mid \ker B^t \neq \{0\}\}$ are called the *times* of the bi-Lie structure.

The pencil of Lie algebras and the times

Switch to $\mathbb{K}=\mathbb{C}$

Bi-Lie structure $(\mathfrak{g}, [,], [,]') \Longrightarrow$ Pencil of Lie brackets $(\mathfrak{g}, [,]^t), [,]^t := [,]' - t[,], t \in \mathbb{C}$

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure, W its principal operator, P its symmetric primitive and let B(,) be the Killing form of $(\mathfrak{g}, [,])$. Then the Killing form B^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ is given by the formula

$$B^t(x,y) = B((W-tI)x,(W-tI)y) - 2B(Px,y), \ x,y \in \mathfrak{g},$$

In particular, ker $B^t \neq \{0\} \iff \det(W^*W - 2P - t(W + W^*) + t^2I) = 0.$

Definition

The elements of the finite set $T := \{t \in \mathbb{C} \mid \ker B^t \neq \{0\}\}$ are called the *times* of the bi-Lie structure.

The central subalgebra

In particular, if $t \in T$, the center \mathfrak{z}^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ can be nontrivial.

Theorem

- The subset \mathfrak{z}^t is a subalgebra in $(\mathfrak{g}, [,])$ for any $t \in T$;
- 2 $\mathfrak{z}^{t_1} \cap \mathfrak{z}^{t_2} = \{0\}$ and $[\mathfrak{z}^{t_1}, \mathfrak{z}^{t_2}] = 0$ if $t_1 \neq t_2$;
- in particular, the set 3 := ∑_{t∈T} 3^t is a subalgebra in (g, [,]) which is a direct sum of its ideals 3^{ti}. Call 3 the central subalgebra of (g, [,], [,]'). Moreover, 3 ⊂ ker P.

Examples: (1) $(\mathfrak{so}(6,\mathbb{C}),[,],[,_{\mathcal{A}}])$; (2) $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$

$$(1)A = \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 & b & 0 \\ 0 & 0 & 0 & 0 & 0 & c \end{bmatrix}, \mathfrak{z} = \begin{bmatrix} * & * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}; (2)\mathfrak{z} = \mathfrak{g}_{0}$$

The central subalgebra

In particular, if $t \in T$, the center \mathfrak{z}^t of the Lie algebra $(\mathfrak{g}, [,]^t)$ can be nontrivial.

Theorem

- The subset \mathfrak{z}^t is a subalgebra in $(\mathfrak{g}, [,])$ for any $t \in T$;
- 2 $\mathfrak{z}^{t_1} \cap \mathfrak{z}^{t_2} = \{0\}$ and $[\mathfrak{z}^{t_1}, \mathfrak{z}^{t_2}] = 0$ if $t_1 \neq t_2$;
- in particular, the set 3 := ∑_{t∈T} 3^t is a subalgebra in (g, [,]) which is a direct sum of its ideals 3^{ti}. Call 3 the central subalgebra of (g, [,], [,]'). Moreover, 3 ⊂ ker P.

$Examples: \ (1) \ (\mathfrak{so}(6,\mathbb{C}),[,],[,_{\mathcal{A}}]); \ (2) \ \mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$											
$(1)A = \begin{bmatrix} a & 0 \\ 0 & a \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	0 0 <i>a</i> 0 0 0	0 0 0 0 0 0 6 0 0 0 0 0) 0) 0) 0) 0) 0) 0) 0) c	,3 =	* * 0 0 0	* * 0 0 0	* * 0 0 0	0 0 * *	0 0 0 * *	0 0 0 0 0 0 0	; $(2)_3 = g_0$

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

Main assumption: $\mathfrak{z} \supset \mathfrak{h}$

The central subalgebra $\mathfrak z$ contains some Cartan subalgebra $\mathfrak h \subset \mathfrak g$ (w.r.t.[,])

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

Main assumption: $\mathfrak{z} \supset \mathfrak{h}$

The central subalgebra $\mathfrak z$ contains some Cartan subalgebra $\mathfrak h \subset \mathfrak g$ (w.r.t.[,])

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

Main assumption: $\mathfrak{z} \supset \mathfrak{h}$

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (w.r.t.[,])

The main assumption $\mathfrak{z} \supset \mathfrak{h}$ is equivalent to the following two conditions

• The principal operator $\mathcal{W} \in \operatorname{End}(\mathfrak{g})$ preserves the grading

$$\mathfrak{g} = \mathfrak{h} + \sum_{lpha \in R} \mathfrak{g}_{lpha}$$

related to the root decomposition with respect to the Cartan subalgebra \mathfrak{h} . In other words for some $\omega_{\alpha} \in \mathbb{C}$

$$W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• The operator $W|_{\mathfrak{h}}$ is diagonalizable.

Recall $W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}, P|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, P|_{\mathfrak{z}} = 0.$ Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
 </sup></sup>
- $\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} t_{2,\alpha})/2)^2 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} \omega_{-\alpha}).$
- $(W t_{1,\alpha}I)(W t_{2,\alpha}I)H_{\alpha} = 0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B(H_{\alpha}, H) = \alpha(H)$ for any $H \in \mathfrak{h}$.

Recall $W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}, P|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, P|_{\mathfrak{z}} = 0.$ Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
 </sup></sup>
- $\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} t_{2,\alpha})/2)^2 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} \omega_{-\alpha}).$
- $(W t_{1,\alpha}I)(W t_{2,\alpha}I)H_{\alpha} = 0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B(H_{\alpha}, H) = \alpha(H)$ for any $H \in \mathfrak{h}$.

Recall $W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}, P|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, P|_{\mathfrak{z}} = 0.$ Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
 </sup></sup>
- $\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} t_{2,\alpha})/2)^2 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} \omega_{-\alpha}).$
- $(W t_{1,\alpha}I)(W t_{2,\alpha}I)H_{\alpha} = 0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B(H_{\alpha}, H) = \alpha(H)$ for any $H \in \mathfrak{h}$.

Recall $W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}, P|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, P|_{\mathfrak{z}} = 0.$ Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

 there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
</sup></sup>

•
$$\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} - t_{2,\alpha})/2)^2 - 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} - \omega_{-\alpha}).$$

• $(W - t_{1,\alpha}I)(W - t_{2,\alpha}I)H_{\alpha} = 0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B(H_{\alpha}, H) = \alpha(H)$ for any $H \in \mathfrak{h}$.

Recall $W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}, P|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, P|_{\mathfrak{z}} = 0.$ Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
 </sup></sup>
- $\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} t_{2,\alpha})/2)^2 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} \omega_{-\alpha}).$
- $(W t_{1,\alpha}I)(W t_{2,\alpha}I)H_{\alpha} = 0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B(H_{\alpha}, H) = \alpha(H)$ for any $H \in \mathfrak{h}$.

Recall $W|_{\mathfrak{g}_{\alpha}} = \omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W\mathfrak{h} \subset \mathfrak{h}, P|_{\mathfrak{g}_{\alpha}} = \pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha} = \pi_{-\alpha}, P|_{\mathfrak{z}} = 0.$ Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

 there exist two times t_{1,α}, t_{2,α} (possibly equal) such that g_α ⊂ ker B<sup>t_{1,α} ∩ ker B<sup>t_{2,α}. They are the solutions of the quadratic equation (t − ω_α)(t − ω_{−α}) − 2π_α = 0. Moreover, if T_α := {t_{1,α}, t_{2,α}}, then T_α = T_{−α}.
</sup></sup>

•
$$\sigma_{\alpha} = (1/2)(t_{1,\alpha} + t_{2,\alpha}), \kappa_{\alpha} = \pm \sqrt{((t_{1,\alpha} - t_{2,\alpha})/2)^2 - 2\pi_{\alpha}}, \text{ where } \sigma_{\alpha} := (1/2)(\omega_{\alpha} + \omega_{-\alpha}), \kappa_{\alpha} := (1/2)(\omega_{\alpha} - \omega_{-\alpha}).$$

• $(W - t_{1,\alpha}I)(W - t_{2,\alpha}I)H_{\alpha} = 0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B(H_{\alpha}, H) = \alpha(H)$ for any $H \in \mathfrak{h}$.

Let α, β, γ be roots such that $\alpha + \beta + \gamma = 0$. Then only the following possibilities can occur ("times selection rules"):

 ${\rm 0} \$ either there exist $t_1,t_2,t_3 \in {\mathbb C} \$ such that

$$T_{\alpha} = \{t_1, t_2\}, T_{\beta} = \{t_2, t_3\}, T_{\gamma} = \{t_3, t_1\};$$

2 or there exist $t_1, t_2 \in \mathbb{C}$ such that

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\},t_1\neq t_2,$$

Moreover, in Case 1 the following equality holds:

$$\kappa_{\alpha} + \kappa_{\beta} + \kappa_{\gamma} = 0$$

and in Case 2:

$$\kappa_{\alpha} + \kappa_{\beta} + \kappa_{\gamma} = \pm (t_1 - t_2)/2.$$

SS bi-Lie structures $\stackrel{1:1}{\iff} (U, \mathcal{T}), \ U : \mathfrak{h} \to \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams

 $\mathcal{T} = \{T_{\alpha}\}_{\alpha \in R}, \ T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, \ t_{i,\alpha} \in \mathbb{C} \text{ obeying the "times selection rules"}$

Examples:

$t_1 t_3$						$t_1 t_2$					
	$t_{1}t_{3}$		$t_2 t_3$		7		$t_1 t_2$		$t_1 t_2$		
$t_1 t_2$		$t_2 t_3$		t3 t3		$t_1 t_1$		$t_1 t_2$		$t_1 t_2$	

Theorem \Longrightarrow two classes of pair diagrams, I and II

Assume that there exist roots α, β, γ such that $\alpha + \beta + \gamma = 0$ and

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}$$

SS bi-Lie structures $\stackrel{1:1}{\iff}$ $(U, \mathcal{T}), U : \mathfrak{h} \to \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams

 $\mathcal{T} = \{T_{\alpha}\}_{\alpha \in R}, \ T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, \ t_{i,\alpha} \in \mathbb{C} \text{ obeying the "times selection rules"}$

Examples:

$t_1 t_3$						$t_1 t_2$					
	$t_1 t_3$		$t_2 t_3$		2		$t_1 t_2$		$t_1 t_2$		
$t_1 t_2$		$t_2 t_3$		t ₃ t ₃		$t_1 t_1$		$t_1 t_2$		$t_1 t_2$	

Theorem \Longrightarrow two classes of pair diagrams, I and II

Assume that there exist roots α, β, γ such that $\alpha + \beta + \gamma = 0$ and

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}$$

SS bi-Lie structures $\stackrel{1:1}{\iff}$ $(U, \mathcal{T}), U : \mathfrak{h} \to \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams

 $\mathcal{T} = \{T_{\alpha}\}_{\alpha \in R}$, $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}$, $t_{i,\alpha} \in \mathbb{C}$ obeying the "times selection rules"

Examples:

Theorem \Longrightarrow two classes of pair diagrams, I and II

Assume that there exist roots α, β, γ such that $\alpha + \beta + \gamma = 0$ and

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}$$

SS bi-Lie structures $\stackrel{1:1}{\Longleftrightarrow}$ $(U, \mathcal{T}), U : \mathfrak{h} \to \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams

 $\mathcal{T} = \{T_{\alpha}\}_{\alpha \in R}, \ T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, \ t_{i,\alpha} \in \mathbb{C} \text{ obeying the "times selection rules"}$

Examples:

Theorem \implies two classes of pair diagrams, I and II

Assume that there exist roots α, β, γ such that $\alpha + \beta + \gamma = 0$ and

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}$$

Example

 $R = \mathfrak{d}_n, \text{ roots } \pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n), U \epsilon_i = t_i \epsilon_i, T_{\pm \epsilon_i \pm \epsilon_j} := \{t_i, t_j\}$ (KP1, $A = \text{diag}(t_1, t_1, \dots, t_n, t_n)$).

- $\begin{aligned} R &= \mathfrak{b}_n, \text{ roots } \pm \epsilon_i (1 \leq i \leq n), \pm \epsilon_i \pm \epsilon_j (1 \leq i < j \leq n) U \epsilon_i = \\ t_i \epsilon_i, T_{\pm \epsilon_i \pm \epsilon_j} &:= \{t_i, t_j\}, T_{\pm \epsilon_i} := \{t_i, (t_{n+1})\} \text{ (KP1,} \\ A &= \text{diag}(t_1, t_1, \dots, t_n, t_n, t_{n+1}) \text{).} \end{aligned}$
- $R = \mathfrak{c}_n, \text{ roots } \pm 2\epsilon_i (1 \le i \le n), \pm \epsilon_i \pm \epsilon_j (1 \le i < j \le n) U \epsilon_i = t_i \epsilon_i, T_{\pm \epsilon_i \pm \epsilon_j} := \{t_i, t_j\}, T_{\pm 2\epsilon_i} := \{t_i, t_i\} \text{ (KP2,} A = \text{diag}(t_1, t_1, \dots, t_n, t_n)).$

 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$.

a) Put
$$w_n := a\alpha_n, w_{n-1} := w_n + \alpha_{n-1}, \dots, w_1 := w_2 + \alpha_1, t_1 t_3$$

where $a \neq 0, 1, U(w_i) := t_i w_i, t_1 t_3 t_2 t_3$
 $T_{\pm(\epsilon_i - \epsilon_j)} := \{t_i t_j\}, \text{ if } i < j < n+1 t_1 t_2 t_2 t_3 t_3 t_3$
and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i t_n\}$
(new).

b) Put a = 1 and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i(t_{n+1})\}$ $t_1 t_2$ $t_1 t_3$ $t_2(t_4)$ $t_1 t_2$ $t_2 t_3$ $t_3(t_4)$ (new, corresponds to $WX = (1/2)(L_A + R_A)X - \text{Tr}((1/2)(L_A + R_A)X)B$, where $X \in \mathfrak{sl}(n+1)$ $A = \text{diag}(t_1, t_2, \dots, t_{n+1})$ $B = \text{diag}(0, 0, \dots, 0, 1)$)

Conjecture

Any bi-Lie structure of Class I is from the list above.

 $(\Leftarrow \text{ classification of specific } \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 \text{-gradings}), \quad \texttt{B}, \quad \texttt{s}, \quad \texttt{s}, \quad \texttt{s} \to \texttt{s} \to \texttt{s}, \quad \texttt{s} \to \texttt{s} \to \texttt{s}, \quad \texttt{s} \to \texttt{s} \to \texttt{s} \to \texttt{s}, \quad \texttt{s} \to \texttt{s} \to$

 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$.

a) Put
$$w_n := a\alpha_n, w_{n-1} :=$$

 $w_n + \alpha_{n-1}, \dots, w_1 := w_2 + \alpha_1, t_1 t_3$
where $a \neq 0, 1, U(w_i) := t_i w_i, t_1 t_3 t_2 t_3$
 $T_{\pm(\epsilon_i - \epsilon_j)} := \{t_i t_j\}, \text{ if } i < j < n+1 t_1 t_2 t_2 t_3 t_3 t_3$
and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i t_n\}$
(new).

b) Put a = 1 and $t_1(t_4)$ $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i(t_{n+1})\}$ t_1t_2 t_2t_3 $t_3(t_4)$ (new, corresponds to $WX = (1/2)(L_A + R_A)X - \text{Tr}((1/2)(L_A + R_A)X)B$, where $X \in \mathfrak{sl}(n+1), A = \text{diag}(t_1, t_2, \dots, t_{n+1}), B = \text{diag}(0, 0, \dots, 0, 1)).$

Conjecture

Any bi-Lie structure of Class I is from the list above

 $(\leftarrow \text{ classification of specific } \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 \text{-gradings}), \quad \exists \forall z \in \mathbb{Z}_2 \times \mathbb{Z}_2$

 $R = \mathfrak{a}_n$, root basis $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_n = \epsilon_n - \epsilon_{n+1}$.

a) Put
$$w_n := a\alpha_n, w_{n-1} :=$$

 $w_n + \alpha_{n-1}, \dots, w_1 := w_2 + \alpha_1, t_1 t_3$
where $a \neq 0, 1, U(w_i) := t_i w_i, t_1 t_3 t_2 t_3$
 $T_{\pm(\epsilon_i - \epsilon_j)} := \{t_i t_j\}, \text{ if } i < j < n+1 t_1 t_2 t_2 t_3 t_3 t_3$
and $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i t_n\}$
(new).

b) Put a = 1 and $t_1(t_4)$ $T_{\pm(\epsilon_i - \epsilon_{n+1})} = \{t_i(t_{n+1})\}$ t_1t_2 t_2t_3 $t_3(t_4)$ (new, corresponds to $WX = (1/2)(L_A + R_A)X - \text{Tr}((1/2)(L_A + R_A)X)B$, where $X \in \mathfrak{sl}(n+1), A = \text{diag}(t_1, t_2, \dots, t_{n+1}), B = \text{diag}(0, 0, \dots, 0, 1)).$

Conjecture

Any bi-Lie structure of Class I is from the list above.

 $(\Leftarrow \text{ classification of specific } \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 \text{-gradings}) \xrightarrow{} \mathbb{Z}_2 \times \mathbb{Z}_2 \text{-gradings}$

Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement" $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Theorem

Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement" $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Theorem

Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement" $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Theorem

Example 1

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_n -grading on \mathfrak{g} related to an *inner* automorphism of *n*-th order, n > 2, and $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ (GS1 with *inner* automorphism of *n*-th order, n > 2).

Example 2

Let $\mathfrak{g} = \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$, where $\tilde{\mathfrak{g}}_0$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_1$ its "complement" $W|_{\tilde{\mathfrak{g}}_i} = \omega_i \mathrm{Id}_{\tilde{\mathfrak{g}}_i}$, ω_i arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_0 is a Levi subalgebra)

Theorem

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to GS1).

Perspectives

- Classification without Main assumption
- Nonsemisimple algebras
- Invariant Nijenhuis and "weak Nijenhuis" (1,1)-tensors on homogeneous spaces
- Clarification of relations with classical R-matrix formalism

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to GS1).

Perspectives

- Classification without Main assumption
- Nonsemisimple algebras
- Invariant Nijenhuis and "weak Nijenhuis" (1,1)-tensors on homogeneous spaces
- Clarification of relations with classical R-matrix formalism

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to GS1).

Perspectives

- Classification without Main assumption
- Nonsemisimple algebras
- Invariant Nijenhuis and "weak Nijenhuis" (1,1)-tensors on homogeneous spaces
- Clarification of relations with classical R-matrix formalism

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Selected bibliography

- Kantor, I. L., and D. B. Persits, *On closed pencils of linear Poisson brackets*, (Russian) in: IXth All-Union Geometric Conference, Kishinev: Shtiintsa, 1988, 141.
- Holod, P. I., Hidden symmetry of the Landau-Lifshitz equation, its higher analogues and dual equation for asymmetric chiral field, (Russian) Teoret. Matem. Fiz. 70 (1987), 1829, English Translation: Theoret. Math. Phys. 70 (1987), 1119.
- Golubchik, I. Z., and V. V. Sokolov, *Compatible Lie brackets and integrable equations of the principal chiral model type*, (Russian) Funkts. Anal. Prilozh. 36 (2002), 919, English Translation: Funct. Anal. Appl. 36 (2002), 172181.
- Odesskii, A., and V. Sokolov, *Algebraic structures connected with pairs of compatible associative algebras*, Int. Math. Res. Not. (2006), 35 pp., Art. ID 43734.

Many thanks for your attention!

Selected bibliography

- Kantor, I. L., and D. B. Persits, *On closed pencils of linear Poisson brackets*, (Russian) in: IXth All-Union Geometric Conference, Kishinev: Shtiintsa, 1988, 141.
- Holod, P. I., Hidden symmetry of the Landau-Lifshitz equation, its higher analogues and dual equation for asymmetric chiral field, (Russian) Teoret. Matem. Fiz. 70 (1987), 1829, English Translation: Theoret. Math. Phys. 70 (1987), 1119.
- Golubchik, I. Z., and V. V. Sokolov, *Compatible Lie brackets and integrable equations of the principal chiral model type*, (Russian) Funkts. Anal. Prilozh. 36 (2002), 919, English Translation: Funct. Anal. Appl. 36 (2002), 172181.
- Odesskii, A., and V. Sokolov, *Algebraic structures connected with pairs of compatible associative algebras*, Int. Math. Res. Not. (2006), 35 pp., Art. ID 43734.

Many thanks for your attention!

< ∃ ► = • • • • •