On classification of Lie pencils

50th seminar "Sophus Lie", Bedlewo, 25 September - 1 October 2016

Andriy Panasyuk

Faculty of Mathematics and Computer Science University of Warmia and Mazury

Olsztyn, Poland

Based on:

"Compatible Lie brackets: Towards a Classification" Journal of Lie Theory, Volume 24 (2014) 561-623

Main definition

Definition

A bi-Lie structure is a triple $\left(\mathfrak{g},[],,[,]^{\prime}\right)$, where \mathfrak{g} is a vector space and $[],,[,]^{\prime}$ are two Lie brackets on \mathfrak{g} which are compatible, i.e. so that $[]+,[,]^{\prime}$ is a Lie bracket.

Example
 Let $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put
 $$
[x, A y]=x A y-y A x .
$$
 Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example
Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}), A \in \operatorname{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure.

Main definition

Definition

A bi-Lie structure is a triple $\left(\mathfrak{g},[],,[,]^{\prime}\right)$, where \mathfrak{g} is a vector space and $[],,[,]^{\prime}$ are two Lie brackets on \mathfrak{g} which are compatible, i.e. so that $[]+,[,]^{\prime}$ is a Lie bracket.

Example

Let $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$
[x, A y]=x A y-y A x
$$

Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}), A \in \operatorname{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure.

Main definition

Definition

A bi-Lie structure is a triple ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$, where \mathfrak{g} is a vector space and $[],,[,]^{\prime}$ are two Lie brackets on \mathfrak{g} which are compatible, i.e. so that $[]+,[,]^{\prime}$ is a Lie bracket.

Example

Let $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$
[x, A y]=x A y-y A x
$$

Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}), A \in \operatorname{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure.

Motivation I: bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_{1}, \eta_{2} \in \Gamma\left(\bigwedge^{2} T M\right)$ such that $\eta_{1}, \eta_{2}, \eta_{1}+\eta_{2}$ are Poisson.

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")
- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")
- etc.

Motivation I: bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_{1}, \eta_{2} \in \Gamma\left(\bigwedge^{2} T M\right)$ such that $\eta_{1}, \eta_{2}, \eta_{1}+\eta_{2}$ are Poisson.

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")
- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")
- etc.

Motivation I: bihamiltonian structures

Semisimple case

Applications of the $\mathfrak{s o}(n, \mathbb{R})$ bi-Lie structure:

- Manakov top (n-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (Bolsinov 1992)
- Klebsh-Perelomov case (Bolsinov 1992)

Another bi-Lie structure on $\mathfrak{s o}(n, \mathbb{R}) \times \mathfrak{s o}(n, \mathbb{R})$

- Generalized Steklov-Lyapunov systems (Bolsinov-Fedorov 1992)
\square
Works of Golubchik, Odesskii, Sokolov ~ 2004-2006
- Matrix integrable ODE's

Motivation I: bihamiltonian structures

Semisimple case

Applications of the $\mathfrak{s o}(n, \mathbb{R})$ bi-Lie structure:

- Manakov top (n-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (Bolsinov 1992)
- Klebsh-Perelomov case (Bolsinov 1992)

Another bi-Lie structure on $\mathfrak{s o}(n, \mathbb{R}) \times \mathfrak{s o}(n, \mathbb{R})$

- Generalized Steklov-Lyapunov systems (Bolsinov-Fedorov 1992)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov ~ 2004-2006

- Matrix integrable ODE's

Motivation II: classical R-matrix formalism

Classical R-matrix

Let \mathfrak{g} be a Lie algebra and $R: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
R[x, y]:=[R x, y]+[x, R y] .
$$

We say that R is a classical R-matrix if ${ }_{R}[$,$] is a Lie bracket.$
 classical R-matrix called standard.

Basic example of the standard classical R-matrix

Let \mathfrak{g} be a Lie algebra, $\tilde{\mathfrak{g}}:=\mathfrak{g}[\lambda, 1 / \lambda]$. Then $\tilde{\mathfrak{g}}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}$, where \mathfrak{g}_{n} is the space of homogeneous Laurent polynomials of degree n and $\mathfrak{g}_{+}:=\bigoplus_{n>0} \mathfrak{g}_{n}, \mathfrak{g}_{-}:=\bigoplus_{n<0} \mathfrak{g}_{n}$ are subalgebras in $\tilde{\mathfrak{g}}$

Motivation II: classical R-matrix formalism

Classical R-matrix

Let \mathfrak{g} be a Lie algebra and $R: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
R[x, y]:=[R x, y]+[x, R y] .
$$

We say that R is a classical R-matrix if ${ }_{R}[$,$] is a Lie bracket.$

Standard classical R-matrix

Let $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$, where $\mathfrak{g}_{ \pm}$are subalgebras. Then $R:=P_{+}-P_{-}$is a classical R-matrix called standard.

Motivation II: classical R-matrix formalism

Classical R-matrix

Let \mathfrak{g} be a Lie algebra and $R: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
R[x, y]:=[R x, y]+[x, R y] .
$$

We say that R is a classical R-matrix if ${ }_{R}[$,$] is a Lie bracket.$

Standard classical R-matrix

Let $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$, where $\mathfrak{g}_{ \pm}$are subalgebras. Then $R:=P_{+}-P_{-}$is a classical R-matrix called standard.

Basic example of the standard classical R-matrix

Let \mathfrak{g} be a Lie algebra, $\tilde{\mathfrak{g}}:=\mathfrak{g}[\lambda, 1 / \lambda]$. Then $\tilde{\mathfrak{g}}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}$, where \mathfrak{g}_{n} is the space of homogeneous Laurent polynomials of degree n and $\mathfrak{g}_{+}:=\bigoplus_{n \geq 0} \mathfrak{g}_{n}, \mathfrak{g}_{-}:=\bigoplus_{n<0} \mathfrak{g}_{n}$ are subalgebras in $\tilde{\mathfrak{g}}$.

Motivation II: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra ($\tilde{\mathfrak{g}},[$,$]) with a decomposition \tilde{\mathfrak{g}}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}$ is quasigraded of degree 1 if $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical R-matrix
One checks that $\mathfrak{g}_{+}:=\bigoplus_{n \geq 0} \mathfrak{g}_{n}, \mathfrak{g}_{-}:=\bigoplus_{n<0} \mathfrak{g}_{n}$ are subalgebras.
Bithe structures \rightarrow quasigraded tie algebras
Let $\left(\mathfrak{g},[,]_{0},[,]_{1}\right)$ be a bi-Lie structure, $\tilde{\mathfrak{g}}:=\mathfrak{g}[\lambda, 1 / \lambda]$. Put $[]=,[,]_{0}+\lambda[,]_{1}$
and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1 .

Motivation II: classical R-matrix formalism

Quasigraded Lie algebras

A Lie algebra ($\tilde{\mathfrak{g}},[$,$]) with a decomposition \tilde{\mathfrak{g}}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}$ is quasigraded of degree 1 if $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical R-matrix

One checks that $\mathfrak{g}_{+}:=\bigoplus_{n \geq 0} \mathfrak{g}_{n}, \mathfrak{g}_{-}:=\bigoplus_{n<0} \mathfrak{g}_{n}$ are subalgebras.

Motivation II: classical R-matrix formalism

Quasigraded Lie algebras
A Lie algebra $(\tilde{\mathfrak{g}},[]$,$) with a decomposition \tilde{\mathfrak{g}}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}$ is quasigraded of degree 1 if $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} \oplus \mathfrak{g}_{i+j+1}$

Quasigraded Lie algebras \rightarrow standard classical R-matrix
One checks that $\mathfrak{g}_{+}:=\bigoplus_{n \geq 0} \mathfrak{g}_{n}, \mathfrak{g}_{-}:=\bigoplus_{n<0} \mathfrak{g}_{n}$ are subalgebras.

Bi-Lie structures \rightarrow quasigraded Lie algebras

Let $\left(\mathfrak{g},[,]_{0},[,]_{1}\right)$ be a bi-Lie structure, $\tilde{\mathfrak{g}}:=\mathfrak{g}[\lambda, 1 / \lambda]$. Put $[]=,[,]_{0}+\lambda[,]_{1}$ and extend this bracket to $\tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{g}}$ is quasigraded of degree 1 .

Motivation II: classical R-matrix formalism

Applications

- Landau-Livshits PDE (the $\mathfrak{s o}(n, \mathbb{R})$ bi-Lie structure, $n=3$, Holod 1987)
- Other finite- and infinite-dimensional systems (Skrypnyk, Golubchik-Sokolov, Yanovski)

Known classification results: the Kantor-Persits theorem

Useful notation

Let \mathfrak{g} be a Lie algebra and $N: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
[x, y]_{N}:=[N x, y]+[x, N y]-N[x, y] .
$$

Definition

Let $\left\{[,]^{v}\right\}_{v \in V}$ be a n-dimensional vector space of Lie structures on a vector space \mathfrak{g}. It is called irreducible if the Lie algebras ($\mathfrak{g},[,]^{v}$) do not have common nontrivial ideals and closed if

Known classification results: the Kantor-Persits theorem

Useful notation

Let \mathfrak{g} be a Lie algebra and $N: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
[x, y]_{N}:=[N x, y]+[x, N y]-N[x, y] .
$$

Definition

Let $\left\{[,]^{v}\right\}_{v \in V}$ be a n-dimensional vector space of Lie structures on a vector space \mathfrak{g}. It is called irreducible if the Lie algebras ($\mathfrak{g},[,]^{v}$) do not have common nontrivial ideals and closed if

$$
\forall x \in \mathfrak{g} \forall v, w \in V \exists u \in V:[,]_{\mathrm{ad}^{w} x}^{v}:=[,]^{u}, \operatorname{ad}^{w} x(y)=[x, y]^{w} .
$$

Known classification results: the Kantor-Persits theorem

Kantor-Persits 1988 (announced only)

The list of irreducible closed vector spaces of Lie structures:

- $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}),\{[, A]\}_{A \in \operatorname{Symm}(n, \mathbb{K})}$
- $\mathfrak{g}=\mathfrak{s p}(n, \mathbb{K}),\{[, A]\}_{A \in \mathfrak{m}(n, \mathbb{K})}$
- several nonsemisimple cases
here

$$
\left[X,{ }_{A} Y\right]:=X A Y-Y A X
$$

$\mathfrak{s p}(n, \mathbb{K})=\left\{X \in \mathfrak{g l}(2 n, \mathbb{K}) \mid X J+J X^{T}=0\right\}$ the symplectic Lie algebra, $\mathfrak{m}(n, \mathbb{K}):=\left\{X \in \mathfrak{g l}(2 n, \mathbb{K}) \mid X J-J X^{T}=0\right\}$ its orthogonal complement in $\mathfrak{g l}(2 n, \mathbb{K})$ w.r.t. "trace form"

Known classification results: the Odesskii-Sokolov theorem

Odesskii-Sokolov 2006

Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{g l}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{g l}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{s l}(n, \mathbb{K})$)

Semisimple bi-Lie structures and their examples

Definition

Say that a bi-Lie structure $\mathcal{B}:=\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is semisimple if $(\mathfrak{g},[]$,$) is$ semisimple.

Known examples of semisimple bi-Lie structures

KP1 ($\mathfrak{s o}(n, \mathbb{C}),[],,[, A])$ (Kantor-Persits 1988)
KP2 ($\mathfrak{s p}(n, \mathbb{C}),[],,[, A])$ (Kantor-Persits 1988)
GS1 Let ($\mathfrak{g},[$,$]) be semisimple. There exists a bi-Lie structure related to$ any \mathbb{Z}_{n}-grading $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ on (\mathfrak{g}, [,]) and to decomposition of the subalgebra $\mathfrak{g}_{0}=\mathfrak{g}_{0}^{1} \oplus \mathfrak{g}_{0}^{2}$ to two subalgebras (Golubchik-Sokolov 2002)
P Let ($\mathfrak{g},[$,$]) be semisimple. There exists a bi-Lie structure related to$ any parabolic subalgebra $\mathfrak{g}_{0} \subset \mathfrak{g}(P 2006)$
GS2 Examples on $\mathfrak{s l}(3, \mathbb{C}), \mathfrak{s o}(4, \mathbb{C})$ related to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-gradings (Golubchik-Sokolov 2002)

Semisimple bi-Lie structures and operators

Obvious or Easy:

Let $(\mathfrak{g},[]$,$) be a Lie algebra, [,] a bilinear bracket.$

- [,]' "compatible" with $[,] \Longleftrightarrow[,]^{\prime}$ is a 2-cocycle on $(\mathfrak{g},[]$,
- In particular, if $\left(\mathrm{g},\left[\mathrm{[}, \mathrm{]},[]^{\prime}\right)\right.$ is a semisimple bi-Lie str., then $[,]^{\prime}=[] W=,[W \cdot, \cdot]+[\cdot, W \cdot]-W[\cdot, \cdot]$ for some $W: \mathfrak{g} \rightarrow \mathfrak{g}$
- (Magri-Kosmann-Schwarzbach) [, $]_{N}$ is a Lie bracket for some $N: \mathfrak{g} \rightarrow \mathfrak{g} \Longleftrightarrow T_{N}(\cdot, \cdot):=[N \cdot, N \cdot]-N[\cdot, \cdot]_{N}$ is a 2-cocycle on $(\mathfrak{g},[]$,
- In particular, $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is a semisimple bi-Lie str. $\Longleftrightarrow[,]^{\prime}=[]$, and $T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$, where $P: \mathfrak{g} \rightarrow \mathfrak{g}$ is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations ad x.

$$
\begin{array}{r}
T_{N}(X, Y):=[N X, N Y]-N([N X, Y]+[X, N Y]-N[X, Y]) \\
=[P X, Y]+[X, P Y]-P[X, Y] \quad \text { (MI) } \tag{MI}
\end{array}
$$

Semisimple bi-Lie structures and operators

Obvious or Easy:

Let $(\mathfrak{g},[]$,$) be a Lie algebra, [,]' a bilinear bracket.$

- [,]' "compatible" with $[,] \Longleftrightarrow[,]^{\prime}$ is a 2-cocycle on $(\mathfrak{g},[]$,
- In particular, if $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is a semisimple bi-Lie str., then $[,]^{\prime}=[,]_{W}=[W \cdot, \cdot]+[\cdot, W \cdot]-W[\cdot, \cdot]$ for some $W: \mathfrak{g} \rightarrow \mathfrak{g}$

Semisimple bi-Lie structures and operators

Obvious or Easy:

Let $(\mathfrak{g},[]$,$) be a Lie algebra, [,]' a bilinear bracket.$

- [,] ${ }^{\prime}$ "compatible" with $[,] \Longleftrightarrow[,]^{\prime}$ is a 2-cocycle on $(\mathfrak{g},[]$,
- In particular, if $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is a semisimple bi-Lie str., then $[,]^{\prime}=[,]_{W}=[W \cdot, \cdot]+[\cdot, W \cdot]-W[\cdot, \cdot]$ for some $W: \mathfrak{g} \rightarrow \mathfrak{g}$
- (Magri-Kosmann-Schwarzbach) [, $]_{N}$ is a Lie bracket for some $N: \mathfrak{g} \rightarrow \mathfrak{g} \Longleftrightarrow T_{N}(\cdot, \cdot):=[N \cdot, N \cdot]-N[\cdot, \cdot]_{N}$ is a 2-cocycle on $(\mathfrak{g},[]$,

Semisimple bi-Lie structures and operators

Obvious or Easy:

Let $(\mathfrak{g},[]$,$) be a Lie algebra, [,]' a bilinear bracket.$

- [,]' "compatible" with $[,] \Longleftrightarrow[,]^{\prime}$ is a 2-cocycle on $(\mathfrak{g},[]$,
- In particular, if $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is a semisimple bi-Lie str., then $[,]^{\prime}=[,]_{W}=[W \cdot, \cdot]+[\cdot, W \cdot]-W[\cdot, \cdot]$ for some $W: \mathfrak{g} \rightarrow \mathfrak{g}$
- (Magri-Kosmann-Schwarzbach) [, $]_{N}$ is a Lie bracket for some $N: \mathfrak{g} \rightarrow \mathfrak{g} \Longleftrightarrow T_{N}(\cdot, \cdot):=[N \cdot, N \cdot]-N[\cdot, \cdot]_{N}$ is a 2-cocycle on ($\left.\mathfrak{g},[],\right)$
- In particular, ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ is a semisimple bi-Lie str. $\Longleftrightarrow[,]^{\prime}=[]$, and $T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$, where $P: \mathfrak{g} \rightarrow \mathfrak{g}$ is another linear operator. Moreover, the operators W, P are defined up to adding of inner differentiations ad x.

$$
\begin{array}{r}
T_{N}(X, Y):=[N X, N Y]-N([N X, Y]+[X, N Y]-N[X, Y]) \\
=[P X, Y]+[X, P Y]-P[X, Y] \quad \text { (MI) } \tag{MI}
\end{array}
$$

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]^{\prime}=[,]_{W}$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

$$
T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}
$$

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]^{\prime}=[,]_{W}$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

$$
T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}
$$

Example

Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_{n}-grading on \mathfrak{g}. Put
$\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ and $\left.P\right|_{\mathfrak{g}_{i}}=\frac{1}{2} i(n-i) \operatorname{Id}_{\mathfrak{g}_{i}}$. One checks MI directly.

Example

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ (sum of subalgebras). Put $\left.W\right|_{\mathfrak{g}_{i}}=\omega_{i} \mathrm{Id}_{\mathfrak{g}_{i}}, i=1$, 2, where $\omega_{1,2}$ are any scalars. Then $T_{W}=0$ (so put $P=0$ in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_{1} a parabolic subalgebra and \mathfrak{g}_{2} its "complement

Semisimple bi-Lie structures: examples of leading operators

Definition

Given a semisimple bi-Lie structure \mathcal{B} call W such that $[,]^{\prime}=[,]_{W}$ a leading operator for \mathcal{B} and P a primitive for W. They satisfy the main identity (MI)

$$
T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}
$$

Example

Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_{n}-grading on \mathfrak{g}. Put
$\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ and $\left.P\right|_{\mathfrak{g}_{i}}=\frac{1}{2} i(n-i) \operatorname{Id}_{\mathfrak{g}_{i}}$. One checks MI directly.

Example

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ (sum of subalgebras). Put $\left.W\right|_{\mathfrak{g}_{i}}=\omega_{i} \mathrm{Id}_{\mathfrak{g}_{i}}, i=1$, 2, where $\omega_{1,2}$ are any scalars. Then $T_{W}=0$ (so put $P=0$ in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_{1} a parabolic subalgebra and \mathfrak{g}_{2} its "complement".

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g})=\operatorname{ad} \mathfrak{g} \oplus C$, where $C=(\operatorname{ad} \mathfrak{g})^{\perp}$ is the orthogonal complement to ad $\mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called principal if $W \in C$.

Example

For $\mathfrak{s o}(n . \mathbb{K})$ bi-Lie structure we have $W=(1 / 2)\left(L_{A}+R_{A}\right)$ (operators of left and right multiplication by A)

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g})=\operatorname{ad} \mathfrak{g} \oplus C$, where $C=(\operatorname{ad} \mathfrak{g})^{\perp}$ is the orthogonal complement to ad $\mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called principal if $W \in C$.

Theorem

(1) There exists a unique principal operator W with the property $[,]^{\prime}=[,]_{W}$. Call it the principal (leading) operator of a bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$.
(2) If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on $\operatorname{End}(\mathfrak{g})$.

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g})=\operatorname{ad} \mathfrak{g} \oplus C$, where $C=(\operatorname{ad} \mathfrak{g})^{\perp}$ is the orthogonal complement to ad $\mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called principal if $W \in C$.

Theorem

(1) There exists a unique principal operator W with the property $[,]^{\prime}=[,]_{W}$. Call it the principal (leading) operator of a bi-Lie structure ($\mathfrak{g},[],,[,]^{\prime}$).
(2) If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the trace form on $\operatorname{End}(\mathfrak{g})$.

Example

For $\mathfrak{s o}(n, \mathbb{K})$ bi-Lie structure we have $W=(1 / 2)\left(L_{A}+R_{A}\right)$ (operators of left and right multiplication by A).

Significance of the principal leading operator

Definition

We say that bi-Lie structures ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra (g, [,]) sending the bracket [,]' to [,]" (to a linear combination $\left.\alpha_{1}[]+,\alpha_{2}[,]^{\prime \prime}\right)$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \Longleftrightarrow classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

Significance of the principal leading operator

Definition

We say that bi-Lie structures ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra ($\mathfrak{g},[$,$]) sending the bracket [,]^{\prime}$ to [, $]^{\prime \prime}$ (to a linear combination $\left.\alpha_{1}[]+,\alpha_{2}[,]^{\prime \prime}\right)$.

Theorem

Let ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ be two semisimple bi-Lie structures and let $W^{\prime}, W^{\prime \prime}$ be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra ($\mathfrak{g},[$,$]) with the property$ $\phi \circ W^{\prime}=W^{\prime \prime} \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \Longleftrightarrow classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

Significance of the principal leading operator

Definition

We say that bi-Lie structures ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ are strongly isomorphic (isomorphic) if there exists an automorphism of the Lie algebra ($\mathfrak{g},[$,$]) sending the bracket [,]^{\prime}$ to [, ${ }^{\prime \prime}$ (to a linear combination $\left.\alpha_{1}[]+,\alpha_{2}[,]^{\prime \prime}\right)$.

Theorem

Let ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ be two semisimple bi-Lie structures and let $W^{\prime}, W^{\prime \prime}$ be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra ($\mathfrak{g},[$,$]) with the property$ $\phi \circ W^{\prime}=W^{\prime \prime} \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \Longleftrightarrow classification of principal operators satisfyting MI up to action of automorphisms, rescaling, and adding scalar operators

The pencil of Lie algebras and the times

Switch to $\mathbb{K}=\mathbb{C}$

Bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right) \Longrightarrow$ Pencil of Lie brackets $\left(\mathfrak{g},[,]^{t}\right),[,]^{t}:=[,]^{\prime}-t[],, t \in \mathbb{C}$

Theorem

Let ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure, W its principal operator, P its symmetric primitive and let $B($,$) be the Killing form of (\mathfrak{g},[]$,$) . Then$ the Killing form B^{t} of the Lie algebra $\left(\mathfrak{g},[,]^{t}\right)$ is given by the formula

$$
B^{t}(x, y)=B((W-t l) x,(W-t l) y)-2 B(P x, y), x, y \in \mathfrak{g}
$$

In particular, $\operatorname{ker} B^{t} \neq\{0\} \Longleftrightarrow \operatorname{det}\left(W^{*} W-2 P-t\left(W+W^{*}\right)+t^{2} I\right)=0$.

The elements of the finite set $T:=\left\{t \in \mathbb{C} \mid \operatorname{ker} B^{t} \neq\{0\}\right\}$ are called the times of the bi-Lie structure

The pencil of Lie algebras and the times

Switch to $\mathbb{K}=\mathbb{C}$

Bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right) \Longrightarrow$ Pencil of Lie brackets $\left(\mathfrak{g},[,]^{t}\right),[,]^{t}:=[,]^{\prime}-t[],, t \in \mathbb{C}$

Theorem

Let ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure, W its principal operator, P its symmetric primitive and let $B($,$) be the Killing form of (\mathfrak{g},[]$,$) . Then$ the Killing form B^{t} of the Lie algebra $\left(\mathfrak{g},[,]^{t}\right)$ is given by the formula

$$
B^{t}(x, y)=B((W-t l) x,(W-t l) y)-2 B(P x, y), x, y \in \mathfrak{g}
$$

In particular, $\operatorname{ker} B^{t} \neq\{0\} \Longleftrightarrow \operatorname{det}\left(W^{*} W-2 P-t\left(W+W^{*}\right)+t^{2} I\right)=0$.

Definition

The elements of the finite set $T:=\left\{t \in \mathbb{C} \mid \operatorname{ker} B^{t} \neq\{0\}\right\}$ are called the times of the bi-Lie structure.

The central subalgebra

In particular, if $t \in T$, the center \mathfrak{z}^{t} of the Lie algebra $\left(\mathfrak{g},[,]^{t}\right)$ can be nontrivial.
Theorem
(1) The subset \mathfrak{z}^{t} is a subalgebra in ($\mathfrak{g},[$,$]) for any t \in T$;
(2) $\mathfrak{z}^{t_{1}} \cap \mathfrak{z}^{t_{2}}=\{0\}$ and $\left[\mathfrak{z}^{t_{1}}, \mathfrak{z}^{t_{2}}\right]=0$ if $t_{1} \neq t_{2}$;
(3) in particular, the set $\mathfrak{z}:=\sum_{t \in T} \mathfrak{z}^{t}$ is a subalgebra in $(\mathfrak{g},[]$,$) which is a$ direct sum of its ideals $\mathfrak{z}^{t_{i}}$. Call \mathfrak{z} the central subalgebra of $\left(\mathfrak{g},[],,[,]^{\prime}\right)$. Moreover, $\mathfrak{z} \subset \operatorname{ker} P$.

The central subalgebra

In particular, if $t \in T$, the center \mathfrak{z}^{t} of the Lie algebra $\left(\mathfrak{g},[,]^{t}\right)$ can be nontrivial.

Theorem

(1) The subset \mathfrak{z}^{t} is a subalgebra in $(\mathfrak{g},[]$,$) for any t \in T$;
(2) $\mathfrak{z}^{t_{1}} \cap \mathfrak{z}^{t_{2}}=\{0\}$ and $\left[\mathfrak{z}^{t_{1}}, \mathfrak{z}^{t_{2}}\right]=0$ if $t_{1} \neq t_{2}$;
(3) in particular, the set $\mathfrak{z}:=\sum_{t \in T} \mathfrak{z}^{t}$ is a subalgebra in $(\mathfrak{g},[]$,$) which is a$ direct sum of its ideals $\mathfrak{z}^{t_{i}}$. Call \mathfrak{z} the central subalgebra of ($\mathfrak{g},[],,[,]^{\prime}$). Moreover, $\mathfrak{z} \subset \operatorname{ker} P$.

Examples: $(1)(\mathfrak{s o}(6, \mathbb{C}),[],,[, A]) ;(2) \mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$

$$
\left[\begin{array}{llllll}
a & 0 & 0 & 0 & 0 & 0 \\
0 & a & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & b & 0 & 0 \\
0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & 0 & 0 & c
\end{array}\right], \mathfrak{z}=\left[\begin{array}{llllll}
* & * & * & 0 & 0 & 0 \\
* & * & * & 0 & 0 & 0 \\
* & * & * & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & 0 \\
0 & 0 & 0 & * & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ;(2) \mathfrak{z}=\mathfrak{g}_{0}
$$

Gradings and Main assumption

Definition

Let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading of a Lie algebra $(\mathfrak{g},[]$,$) , i.e. \left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma, \Gamma$ an abelian group. We say that a linear operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading if $W \mathfrak{g}_{i} \subset \mathfrak{g}_{i}$ for any $i \in \Gamma$.

Main assumption: $\mathfrak{z} \supset \mathfrak{h}$

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset g$ (w.r.t.[.])

Gradings and Main assumption

Definition

Let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading of a Lie algebra $(\mathfrak{g},[]$,$) , i.e. \left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma, \Gamma$ an abelian group. We say that a linear operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading if $W \mathfrak{g}_{i} \subset \mathfrak{g}_{i}$ for any $i \in \Gamma$.

Theorem

Let $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure and let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading. Then, if the principal operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

Main assumption:

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (w.r.t.[,])

Gradings and Main assumption

Definition

Let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading of a Lie algebra $(\mathfrak{g},[]$,$) , i.e. \left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma, \Gamma$ an abelian group. We say that a linear operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading if $W \mathfrak{g}_{i} \subset \mathfrak{g}_{i}$ for any $i \in \Gamma$.

Theorem

Let $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure and let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading. Then, if the principal operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading, so does its symmetric primitive P.

Main assumption: $\mathfrak{z} \supset \mathfrak{h}$

The central subalgebra \mathfrak{z} contains some Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (w.r.t.[,])

Gradings and Main assumption

Theorem

The main assumption $\mathfrak{z} \supset \mathfrak{h}$ is equivalent to the following two conditions

- The principal operator $W \in \operatorname{End}(\mathfrak{g})$ preserves the grading

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in R} \mathfrak{g}_{\alpha}
$$

related to the root decomposition with respect to the Cartan subalgebra \mathfrak{h}. In other words for some $\omega_{\alpha} \in \mathbb{C}$

$$
\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h} .
$$

- The operator $\left.W\right|_{\mathfrak{h}}$ is diagonalizable.

Consequences of the Main assumption I

Theorem

Recall $\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h},\left.P\right|_{\mathfrak{g}_{\alpha}}=\pi_{\alpha} \mathrm{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha}=\pi_{-\alpha},\left.P\right|_{\mathfrak{z}}=0$. Then
\mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times $t_{1, \alpha}, t_{2, \alpha}$ (possibly equal) such that
$\mathfrak{g}_{\alpha} \subset \operatorname{ker} B^{t_{1, \alpha}} \cap \operatorname{ker} B^{t_{2, \alpha}}$. They are the solutions of the quadratic equation $\left(t-\omega_{\alpha}\right)\left(t-\omega_{-\alpha}\right)-2 \pi_{\alpha}=0$. Moreover, if
$T_{\alpha}:=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, then $T_{\alpha}=T_{-\alpha}$
- $\sigma_{\alpha}=(1 / 2)\left(t_{1 . \alpha}+t_{2 . \alpha}\right), \kappa_{\alpha}= \pm \sqrt{\left(\left(t_{1, \alpha}-t_{2, \alpha}\right) / 2\right)^{2}-2 \pi_{\alpha}}$, where
$\sigma_{\alpha}:=(1 / 2)\left(\omega_{\alpha}+\omega_{-\alpha}\right), \kappa_{\alpha}:=(1 / 2)\left(\omega_{\alpha}-\omega_{-\alpha}\right)$
- $\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right) H_{\alpha}=0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B\left(H_{\alpha}, H\right)=\alpha(H)$ for any $H \in \mathfrak{h}$
Consequently, $\left.W\right|_{\mathfrak{h}}$ is admissible in the following sense: for any root α the vector $H_{\alpha} \in \mathfrak{h}$ is either an eigenvector of W, or a sum of two eigenvectors of W.

Consequences of the Main assumption I

Theorem

Recall $\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h},\left.P\right|_{\mathfrak{g}_{\alpha}}=\pi_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha}=\pi_{-\alpha},\left.P\right|_{\mathfrak{z}}=0$. Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times $t_{1, \alpha}, t_{2, \alpha}$ (possibly equal) such that $\mathfrak{g}_{\alpha} \subset \operatorname{ker} B^{t_{1, \alpha}} \cap \operatorname{ker} B^{t_{2, \alpha}}$. They are the solutions of the quadratic equation $\left(t-\omega_{\alpha}\right)\left(t-\omega_{-\alpha}\right)-2 \pi_{\alpha}=0$. Moreover, if $T_{\alpha}:=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, then $T_{\alpha}=T_{-\alpha}$
- $\sigma_{\alpha}=(1 / 2)\left(t_{1, \alpha}+t_{2, \alpha}\right), \kappa_{\alpha}= \pm \sqrt{\left(\left(t_{1, \alpha}-t_{2, \alpha}\right) / 2\right)^{2}-2 \pi_{\alpha}}$, where $\sigma_{\alpha}:=(1 / 2)\left(\omega_{\alpha}+\omega_{-\alpha}\right), \kappa_{\alpha}:=(1 / 2)\left(\omega_{\alpha}-\omega_{-\alpha}\right)$
- $\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right) H_{\alpha}=0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B\left(H_{\alpha}, H\right)=\alpha(H)$ for any $H \in \mathfrak{h}$
Consequently, M / I_{r} is admissible in the following sense: for any root α the vector $H_{\alpha} \in \mathfrak{h}$ is either an eigenvector of W, or a sum of two eigenvectors of W

Consequences of the Main assumption I

Theorem

Recall $\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h},\left.P\right|_{\mathfrak{g}_{\alpha}}=\pi_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha}=\pi_{-\alpha},\left.P\right|_{\mathfrak{z}}=0$. Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times $t_{1, \alpha}, t_{2, \alpha}$ (possibly equal) such that $\mathfrak{g}_{\alpha} \subset \operatorname{ker} B^{t_{1, \alpha}} \cap \operatorname{ker} B^{t_{2, \alpha}}$. They are the solutions of the quadratic equation $\left(t-\omega_{\alpha}\right)\left(t-\omega_{-\alpha}\right)-2 \pi_{\alpha}=0$. Moreover, if $T_{\alpha}:=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, then $T_{\alpha}=T_{-\alpha}$.
 $\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right) H_{\alpha}=0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B\left(H_{\alpha}, H\right)=\alpha(H)$ for any $H \in \mathfrak{h}$
Consequently, $\left.W\right|_{\mathfrak{h}}$ is admissible in the following sense: for any root α the vector $H_{\alpha} \in \mathfrak{h}$ is either an eigenvector of W, or a sum of two eigenvectors of W

Consequences of the Main assumption I

Theorem

Recall $\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h},\left.P\right|_{\mathfrak{g}_{\alpha}}=\pi_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha}=\pi_{-\alpha},\left.P\right|_{\mathfrak{z}}=0$. Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times $t_{1, \alpha}, t_{2, \alpha}$ (possibly equal) such that $\mathfrak{g}_{\alpha} \subset \operatorname{ker} B^{t_{1, \alpha}} \cap \operatorname{ker} B^{t_{2, \alpha}}$. They are the solutions of the quadratic equation $\left(t-\omega_{\alpha}\right)\left(t-\omega_{-\alpha}\right)-2 \pi_{\alpha}=0$. Moreover, if $T_{\alpha}:=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, then $T_{\alpha}=T_{-\alpha}$.
- $\sigma_{\alpha}=(1 / 2)\left(t_{1, \alpha}+t_{2, \alpha}\right), \kappa_{\alpha}= \pm \sqrt{\left(\left(t_{1, \alpha}-t_{2, \alpha}\right) / 2\right)^{2}-2 \pi_{\alpha}}$, where $\sigma_{\alpha}:=(1 / 2)\left(\omega_{\alpha}+\omega_{-\alpha}\right), \kappa_{\alpha}:=(1 / 2)\left(\omega_{\alpha}-\omega_{-\alpha}\right)$.

Consequently, $\left.W\right|_{\mathfrak{h}}$ is admissible in the following sense: for any root α the vector $H_{\alpha} \in \mathfrak{h}$ is either an eigenvector of W, or a sum of two eigenvectors of W

Consequences of the Main assumption I

Theorem

Recall $\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h},\left.P\right|_{\mathfrak{g}_{\alpha}}=\pi_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha}=\pi_{-\alpha},\left.P\right|_{\mathfrak{z}}=0$. Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times $t_{1, \alpha}, t_{2, \alpha}$ (possibly equal) such that $\mathfrak{g}_{\alpha} \subset \operatorname{ker} B^{t_{1, \alpha}} \cap \operatorname{ker} B^{t_{2, \alpha}}$. They are the solutions of the quadratic equation $\left(t-\omega_{\alpha}\right)\left(t-\omega_{-\alpha}\right)-2 \pi_{\alpha}=0$. Moreover, if $T_{\alpha}:=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, then $T_{\alpha}=T_{-\alpha}$.
- $\sigma_{\alpha}=(1 / 2)\left(t_{1, \alpha}+t_{2, \alpha}\right), \kappa_{\alpha}= \pm \sqrt{\left(\left(t_{1, \alpha}-t_{2, \alpha}\right) / 2\right)^{2}-2 \pi_{\alpha}}$, where $\sigma_{\alpha}:=(1 / 2)\left(\omega_{\alpha}+\omega_{-\alpha}\right), \kappa_{\alpha}:=(1 / 2)\left(\omega_{\alpha}-\omega_{-\alpha}\right)$.
- $\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right) H_{\alpha}=0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B\left(H_{\alpha}, H\right)=\alpha(H)$ for any $H \in \mathfrak{h}$.
Consequently, $\left.W\right|_{\mathfrak{h}}$ is admissible in the following sense: for any root α the vector $H_{\alpha} \in \mathfrak{h}$ is either an eigenvector of W, or a sum of two eigenvectors of W

Consequences of the Main assumption I

Theorem

Recall $\left.W\right|_{\mathfrak{g}_{\alpha}}=\omega_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, W \mathfrak{h} \subset \mathfrak{h},\left.P\right|_{\mathfrak{g}_{\alpha}}=\pi_{\alpha} \operatorname{Id}_{\mathfrak{g}_{\alpha}}, \pi_{\alpha}=\pi_{-\alpha},\left.P\right|_{\mathfrak{z}}=0$. Then \mathfrak{z} is a reductive in \mathfrak{g} Lie subalgebra and for any root α

- there exist two times $t_{1, \alpha}, t_{2, \alpha}$ (possibly equal) such that $\mathfrak{g}_{\alpha} \subset \operatorname{ker} B^{t_{1, \alpha}} \cap \operatorname{ker} B^{t_{2, \alpha}}$. They are the solutions of the quadratic equation $\left(t-\omega_{\alpha}\right)\left(t-\omega_{-\alpha}\right)-2 \pi_{\alpha}=0$. Moreover, if $T_{\alpha}:=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, then $T_{\alpha}=T_{-\alpha}$.
- $\sigma_{\alpha}=(1 / 2)\left(t_{1, \alpha}+t_{2, \alpha}\right), \kappa_{\alpha}= \pm \sqrt{\left(\left(t_{1, \alpha}-t_{2, \alpha}\right) / 2\right)^{2}-2 \pi_{\alpha}}$, where $\sigma_{\alpha}:=(1 / 2)\left(\omega_{\alpha}+\omega_{-\alpha}\right), \kappa_{\alpha}:=(1 / 2)\left(\omega_{\alpha}-\omega_{-\alpha}\right)$.
- $\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right) H_{\alpha}=0$, here $H_{\alpha} \in \mathfrak{h}, \alpha \in R$, is such that $B\left(H_{\alpha}, H\right)=\alpha(H)$ for any $H \in \mathfrak{h}$.
Consequently, $\left.W\right|_{\mathfrak{h}}$ is admissible in the following sense: for any root α the vector $H_{\alpha} \in \mathfrak{h}$ is either an eigenvector of W, or a sum of two eigenvectors of W.

Consequences of the Main assumption II

Theorem

Let α, β, γ be roots such that $\alpha+\beta+\gamma=0$. Then only the following possibilities can occur ("times selection rules"):
(1) either there exist $t_{1}, t_{2}, t_{3} \in \mathbb{C}$ such that

$$
T_{\alpha}=\left\{t_{1}, t_{2}\right\}, T_{\beta}=\left\{t_{2}, t_{3}\right\}, T_{\gamma}=\left\{t_{3}, t_{1}\right\} ;
$$

(2) or there exist $t_{1}, t_{2} \in \mathbb{C}$ such that

$$
T_{\alpha}=T_{\beta}=T_{\gamma}=\left\{t_{1}, t_{2}\right\}, t_{1} \neq t_{2}
$$

Moreover, in Case 1 the following equality holds:

$$
\kappa_{\alpha}+\kappa_{\beta}+\kappa_{\gamma}=0
$$

and in Case 2:

$$
\kappa_{\alpha}+\kappa_{\beta}+\kappa_{\gamma}= \pm\left(t_{1}-t_{2}\right) / 2
$$

Consequences of the Main assumption III

SS bi-Lie structures $\stackrel{1: 1}{\Longleftrightarrow}(U, \mathcal{T}), U: \mathfrak{h} \rightarrow \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams
 $\mathcal{T}=\left\{\boldsymbol{T}_{\alpha}\right\}_{\alpha \in R}, \boldsymbol{T}_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}, t_{i, \alpha} \in \mathbb{C}$ obeying the "times selection

 rules"
Examples:

Theorem \Longrightarrow two classes of pair diagrams, I and II
Assume that there exist roots α, β, γ such that $\alpha+\beta+\gamma=0$ and

$$
T_{\alpha}=T_{\beta}=T_{\gamma}=\left\{t_{1}, t_{2}\right\}
$$

Consequences of the Main assumption III

SS bi-Lie structures $\stackrel{1: 1}{\Longleftrightarrow}(U, \mathcal{T}), U: \mathfrak{h} \rightarrow \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams

$\mathcal{T}=\left\{T_{\alpha}\right\}_{\alpha \in R}, T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}, t_{i, \alpha} \in \mathbb{C}$ obeying the "times selection rules"

Examples:

$$
t_{1} t_{3}
$$

$$
t_{1} t_{3}
$$

Theoremtwo classes of pair diagrams, I and II
\square

$$
T_{\alpha}=T_{\beta}=T_{\gamma}=\left\{t_{1}, t_{2}\right\}
$$

Consequences of the Main assumption III

SS bi-Lie structures $\stackrel{1: 1}{\Longleftrightarrow}(U, \mathcal{T}), U: \mathfrak{h} \rightarrow \mathfrak{h}$ admissible, \mathcal{T} a pair diagram
Pair diagrams
$\mathcal{T}=\left\{T_{\alpha}\right\}_{\alpha \in R}, T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}, t_{i, \alpha} \in \mathbb{C}$ obeying the "times selection rules"

Examples:

		$t_{1} t_{3}$							$t_{1} t_{2}$						
$t_{1} t_{3}$		$t_{2} t_{3}$													
$t_{1} t_{2}$		$t_{2} t_{3}$		$t_{3} t_{3}$,$\quad t_{1} t_{1}$	$t_{1} t_{2}$		$t_{1} t_{2}$		$t_{1} t_{2}$
:---	:---	:---	:---	:---											

Theorem \rightarrow two classes of pair diagrams, I and II
Assume that there exist roots α, β, γ such that $\alpha+\beta+\gamma=0$ and

Consequences of the Main assumption III

SS bi-Lie structures $\stackrel{1: 1}{\Longleftrightarrow}(U, \mathcal{T}), U: \mathfrak{h} \rightarrow \mathfrak{h}$ admissible, \mathcal{T} a pair diagram

Pair diagrams

$\mathcal{T}=\left\{T_{\alpha}\right\}_{\alpha \in R}, T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}, t_{i, \alpha} \in \mathbb{C}$ obeying the "times selection rules"

Examples:

		$t_{1} t_{3}$														
	$t_{1} t_{3}$		$t_{2} t_{3}$													
$t_{1} t_{2}$		$t_{2} t_{3}$		$t_{3} t_{3}$,\quad		$t_{1} t_{1}$		$t_{1} t_{2}$		$t_{1} t_{2}$
:---	:---	:---	:---	:---	:---											

Theorem \Longrightarrow two classes of pair diagrams, I and II
Assume that there exist roots α, β, γ such that $\alpha+\beta+\gamma=0$ and

$$
T_{\alpha}=T_{\beta}=T_{\gamma}=\left\{t_{1}, t_{2}\right\}
$$

for some $t_{1}, t_{2}, t_{1} \neq t_{2}$. Then $T_{\delta}=\left\{t_{1}, t_{2}\right\},\left\{t_{1}, t_{1}\right\}$ or $\left\{t_{2}, t_{2}\right\}$ for any δ.

Examples of bi-Lie structures of Class I

Example

$R=\mathfrak{d}_{n}$, roots $\pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i<j \leq n), U \epsilon_{i}=t_{i} \epsilon_{i}, T_{ \pm \epsilon_{i} \pm \epsilon_{j}}:=\left\{t_{i}, t_{j}\right\}$ $\left(\mathrm{KP} 1, A=\operatorname{diag}\left(t_{1}, t_{1}, \ldots, t_{n}, t_{n}\right)\right)$.
$R=\mathfrak{b}_{n}$, roots $\pm \epsilon_{i}(1 \leq i \leq n), \pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i<j \leq n) U \epsilon_{i}=$ $t_{i} \epsilon_{i}, T_{ \pm \epsilon_{i} \pm \epsilon_{j}}:=\left\{t_{i}, t_{j}\right\}, T_{ \pm \epsilon_{i}}:=\left\{t_{i},\left(t_{n+1}\right)\right\}(\mathrm{KP} 1$,
$\left.A=\operatorname{diag}\left(t_{1}, t_{1}, \ldots, t_{n}, t_{n}, t_{n+1}\right)\right)$.
$R=\mathfrak{c}_{n}$, roots $\pm 2 \epsilon_{i}(1 \leq i \leq n), \pm \epsilon_{i} \pm \epsilon_{j}(1 \leq i<j \leq n) U \epsilon_{i}=$ $t_{i} \epsilon_{i}, T_{ \pm \epsilon_{i} \pm \epsilon_{j}}:=\left\{t_{i}, t_{j}\right\}, T_{ \pm 2 \epsilon_{i}}:=\left\{t_{i}, t_{i}\right\} \quad\left(\mathrm{KP} 2, A=\operatorname{diag}\left(t_{1}, t_{1}, \ldots, t_{n}, t_{n}\right)\right)$.

Examples of bi-Lie structures of Class I

$$
R=\mathfrak{a}_{n}, \text { root basis } \alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{2}=\epsilon_{2}-\epsilon_{3}, \ldots, \alpha_{n}=\epsilon_{n}-\epsilon_{n+1}
$$

a) Put $w_{n}:=a \alpha_{n}, w_{n-1}:=$
$w_{n}+\alpha_{n-1}, \ldots, w_{1}:=w_{2}+\alpha_{1}$,
where $a \neq 0,1, U\left(w_{i}\right):=t_{i} w_{i}$,
$T_{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)}:=\left\{t_{i} t_{j}\right\}$, if $i<j<n+1$
and $T_{ \pm\left(\epsilon_{i}-\epsilon_{n+1}\right)}=\left\{t_{i} t_{n}\right\}$ (new).
$t_{1} t_{3}$
$t_{1} t_{2} \stackrel{t_{1} t_{3}}{ }{ }^{t_{2} t_{3}} \stackrel{t_{2} t_{3}}{ } t_{3} t_{3}$
b) Put $a=1$ and
(new, corresponds to $W X=(1 / 2)\left(L_{A}+R_{A}\right) X-\operatorname{Tr}\left((1 / 2)\left(L_{A}+R_{A}\right) X\right) B$ where $\left.X \in \mathfrak{s l}(n+1), A=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n+1}\right), B=\operatorname{diag}(0,0, \ldots, 0,1)\right)$.

Conjecture

Any bi-Lie structure of Class I is from the list above.

Examples of bi-Lie structures of Class I

$$
R=\mathfrak{a}_{n}, \text { root basis } \alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{2}=\epsilon_{2}-\epsilon_{3}, \ldots, \alpha_{n}=\epsilon_{n}-\epsilon_{n+1}
$$

a) Put $w_{n}:=a \alpha_{n}, w_{n-1}:=$
$w_{n}+\alpha_{n-1}, \ldots, w_{1}:=w_{2}+\alpha_{1}$,
where $a \neq 0,1, U\left(w_{i}\right):=t_{i} w_{i}$,
$T_{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)}:=\left\{t_{i} t_{j}\right\}$, if $i<j<n+1$
and $T_{ \pm\left(\epsilon_{i}-\epsilon_{n+1}\right)}=\left\{t_{i} t_{n}\right\}$ (new).

$$
t_{1} t_{3}
$$

$t_{1} t_{3} \quad t_{2} t_{3}$
$t_{2} t_{3} \quad t_{3} t_{3}$
$t_{1} t_{2}$

```
\(\square\)
```

\square
b) Put $a=1$ and $\quad t_{1}\left(t_{4}\right)$

$$
T_{ \pm\left(\epsilon_{i}-\epsilon_{n+1}\right)}=\left\{t_{i}\left(t_{n+1}\right)\right\}
$$

$$
t_{1} t_{3} \quad t_{2}\left(t_{4}\right)
$$

(new, corresponds to $W X=(1 / 2)\left(L_{A}+R_{A}\right) X-\operatorname{Tr}\left((1 / 2)\left(L_{A}+R_{A}\right) X\right) B$, where $\left.X \in \mathfrak{s l}(n+1), A=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n+1}\right), B=\operatorname{diag}(0,0, \ldots, 0,1)\right)$.

Examples of bi-Lie structures of Class I

$$
R=\mathfrak{a}_{n}, \text { root basis } \alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{2}=\epsilon_{2}-\epsilon_{3}, \ldots, \alpha_{n}=\epsilon_{n}-\epsilon_{n+1} .
$$

a) Put $w_{n}:=a \alpha_{n}, w_{n-1}:=$
$w_{n}+\alpha_{n-1}, \ldots, w_{1}:=w_{2}+\alpha_{1}$,
where $a \neq 0,1, U\left(w_{i}\right):=t_{i} w_{i}$,
$T_{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)}:=\left\{t_{i} t_{j}\right\}$, if $i<j<n+1$
and $T_{ \pm\left(\epsilon_{i}-\epsilon_{n+1}\right)}=\left\{t_{i} t_{n}\right\}$ (new).
b) Put $a=1$ and $T_{ \pm\left(\epsilon_{i}-\epsilon_{n+1}\right)}=\left\{t_{i}\left(t_{n+1}\right)\right\}$ (new, corresponds to $W X=(1 / 2)\left(L_{A}+R_{A}\right) X-\operatorname{Tr}\left((1 / 2)\left(L_{A}+R_{A}\right) X\right) B$, where $\left.X \in \mathfrak{s l}(n+1), A=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n+1}\right), B=\operatorname{diag}(0,0, \ldots, 0,1)\right)$.

Conjecture

Any bi-Lie structure of Class I is from the list above.
$\left(\Leftarrow\right.$ classification of specific $\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$-gradings)

Examples of bi-Lie structures of Class II

Example 1

Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_{n}-grading on \mathfrak{g} related to an inner automorphism of n-th order, $n>2$, and $\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ (GS1 with inner automorphism of n-th order, $n>2$).

Theorem

Any bi-Lie structure of Class || for $g=a_{n}$ is a modification of Example 1 (belongs to GS1)

Examples of bi-Lie structures of Class II

Example 1

Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_{n}-grading on \mathfrak{g} related to an inner automorphism of n-th order, $n>2$, and $\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ (GS1 with inner automorphism of n-th order, $n>2$).

Example 2

Let $\mathfrak{g}=\tilde{\mathfrak{g}}_{0} \oplus \tilde{\mathfrak{g}}_{1}$, where $\tilde{\mathfrak{g}}_{0}$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_{1}$ its "complement" $\left.W\right|_{\tilde{g}_{i}}=\omega_{i} \mathrm{Id}_{\tilde{\mathfrak{g}}_{i}}, \omega_{i}$ arbitrary (P).

Theorem
 Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_{0} is a Levi subalgebra)

Theorem

Anv bi-Lie structure of Class II for $g=a_{n}$ is a modification of Example 1 (belongs to GS1)

Examples of bi-Lie structures of Class II

Example 1

Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_{n}-grading on \mathfrak{g} related to an inner automorphism of n-th order, $n>2$, and $\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ (GS1 with inner automorphism of n-th order, $n>2$).

Example 2

Let $\mathfrak{g}=\tilde{\mathfrak{g}}_{0} \oplus \tilde{\mathfrak{g}}_{1}$, where $\tilde{\mathfrak{g}}_{0}$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_{1}$ its "complement" $\left.W\right|_{\tilde{\mathfrak{g}}_{i}}=\omega_{i} \mathrm{Id}_{\tilde{\mathfrak{g}}_{i}}, \omega_{i}$ arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_{0} is a Levi subalgebra)

Any bi-Lie structure of Class II for $\mathfrak{g}=\mathfrak{a}_{n}$ is a modification of Example 1 (belongs to GS1)

Examples of bi-Lie structures of Class II

Example 1

Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a \mathbb{Z}_{n}-grading on \mathfrak{g} related to an inner automorphism of n-th order, $n>2$, and $\left.W\right|_{\mathfrak{g}_{i}}=i \mathrm{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ (GS1 with inner automorphism of n-th order, $n>2$).

Example 2

Let $\mathfrak{g}=\tilde{\mathfrak{g}}_{0} \oplus \tilde{\mathfrak{g}}_{1}$, where $\tilde{\mathfrak{g}}_{0}$ is a parabolic subalgebra and $\tilde{\mathfrak{g}}_{1}$ its "complement" $\left.W\right|_{\tilde{g}_{i}}=\omega_{i} \mathrm{Id}_{\tilde{\mathfrak{g}}_{i}}, \omega_{i}$ arbitrary (P).

Theorem

Any Example 2 is isomorphic to one of the Examples 1 (for which \mathfrak{g}_{0} is a Levi subalgebra)

Theorem

Any bi-Lie structure of Class II for $\mathfrak{g}=\mathfrak{a}_{n}$ is a modification of Example 1 (belongs to GS1).

Bi-Lie structures of Class II

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to GS1).

Perspectives

- Classification without Main assumption
- Nonsemisimple algebras
- Invariant Nijenhuis and "weak Nijenhuis" (1,1)-tensors on homogeneous spaces
- Clarification of relations with classical R-matrix formalism

Bi-Lie structures of Class II

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to GS1).

Perspectives

- Classification without Main assumption
- Nonsemisimple algebras
- Invariant Nijenhuis and "weak Nijenhuis" (1,1)-tensors on homogeneous spaces
- Clarification of relations with classical R-matrix formalism

Bi-Lie structures of Class II

Conjecture

Any bi-Lie structure of Class II is a modification of Example 1 (belongs to GS1).

Perspectives

- Classification without Main assumption
- Nonsemisimple algebras
- Invariant Nijenhuis and "weak Nijenhuis" (1,1)-tensors on homogeneous spaces
- Clarification of relations with classical R-matrix formalism

Selected bibliography

- Kantor, I. L., and D. B. Persits, On closed pencils of linear Poisson brackets, (Russian) in: IXth All-Union Geometric Conference, Kishinev: Shtiintsa, 1988, 141.
- Holod, P. I., Hidden symmetry of the Landau-Lifshitz equation, its higher analogues and dual equation for asymmetric chiral field, (Russian) Teoret. Matem. Fiz. 70 (1987), 1829, English Translation: Theoret. Math. Phys. 70 (1987), 1119.
- Golubchik, I. Z., and V. V. Sokolov, Compatible Lie brackets and integrable equations of the principal chiral model type, (Russian) Funkts. Anal. Prilozh. 36 (2002), 919, English Translation: Funct. Anal. Appl. 36 (2002), 172181.
- Odesskii, A., and V. Sokolov, Algebraic structures connected with pairs of compatible associative algebras, Int. Math. Res. Not. (2006), 35 pp., Art. ID 43734.

Selected bibliography

- Kantor, I. L., and D. B. Persits, On closed pencils of linear Poisson brackets, (Russian) in: IXth All-Union Geometric Conference, Kishinev: Shtiintsa, 1988, 141.
- Holod, P. I., Hidden symmetry of the Landau-Lifshitz equation, its higher analogues and dual equation for asymmetric chiral field, (Russian) Teoret. Matem. Fiz. 70 (1987), 1829, English Translation: Theoret. Math. Phys. 70 (1987), 1119.
- Golubchik, I. Z., and V. V. Sokolov, Compatible Lie brackets and integrable equations of the principal chiral model type, (Russian) Funkts. Anal. Prilozh. 36 (2002), 919, English Translation: Funct. Anal. Appl. 36 (2002), 172181.
- Odesskii, A., and V. Sokolov, Algebraic structures connected with pairs of compatible associative algebras, Int. Math. Res. Not. (2006), 35 pp., Art. ID 43734.

Many thanks for your attention!

