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Context: Geometric Scattering Theory

Spectral analysis of the (positive) Laplacian A on a complete non-compact
Riemannian manifold (X, g).

Examples: 2
X n. _ n 15}
o Euclidean space R": A=-31, ox?

o Poincaré half-plane H = {z = x + iy € C : y > 0} with hyperbolic metric:

a= (5 )

A is a positive, essentially self-adjoint operator on the Hilbert space L2(X).
Suppose: A has continuous spectrum o (A) = [p%, +oo[ with p% > 0.
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Context: Geometric Scattering Theory

Spectral analysis of the (positive) Laplacian A on a complete non-compact
Riemannian manifold (X, g).

Examples: ,
o Euclidean space R": A=— ZF:1 %_
i
o Poincaré half-plane H = {z = x + iy € C : y > 0} with hyperbolic metric:
_ 20 &
A=y (52 +52)

A is a positive, essentially self-adjoint operator on the Hilbert space L2(X).
Suppose: A has continuous spectrum o (A) = [p%, +oo[ with p% > 0.

The resolvent of A
Ra(u) = (A —u)™!

is a bdd operator on L?(X) depending holomorphically on u € C\ o(4), i.e.

C\ o(A) 3 u— Ra(u) € B(LA(X)).
is a holomorphic operator-valued function.
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Context: Geometric Scattering Theory

Spectral analysis of the (positive) Laplacian A on a complete non-compact
Riemannian manifold (X, g).

Examples: ,
i n. — n 15}
o Euclidean space R": A=-31, aTI?'

o Poincaré half-plane H = {z = x + iy € C: y > 0} with hyperbolic metric:
2 2
A is a positive, essentially self-adjoint operator on the Hilbert space L2(X).
Suppose: A has continuous spectrum o (A) = [p%, +oo[ with p% > 0.

The resolvent of A
Ra(u) = (A —u)™!

is a bdd operator on L?(X) depending holomorphically on u € C\ o(4), i.e.
C\ o(A) 5 u — Ra(u) € B(LA(X)).

is a holomorphic operator-valued function.

As operator on L?(X), the resolvent R has no extension across o(A).

Letting Ra act on a smaller dense subspace of L?(X), e.g. C°(X), a meromorphic
continuation of Ra across o(A) is possible in many cases.
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Problem 1: Meromorphic continuation

Wanted: meromorphic continuation of Ra : C \ o(A) — B(L?(X)) across o(A),
by replacing B(L?(X)) with Hom(Cg°(X),C°(X)")
ie.
M
e a Riemann surface l" with Q open in C, containing (a part of) o(A)

Q
e Ra : M — Hom(Cg°(X),Cs°(X)") meromorphic

and extending a lift of Ra to M:
\ Vi, g € C3°(X):
M 4) Hom COO(X) C°°( )) (Ra()f, @) 2y, lifts and extends

]\ / to M the function (Ra(-)f, g} 2,
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Problem 1: Meromorphic continuation

Wanted: meromorphic continuation of Ra : C \ o(A) — B(L?(X)) across o(A),

by replacing B(L3(X)) with Hom(CZ®(X),C (X))
i.e.
M
e a Riemann surface l" with Q open in C, containing (a part of) o(A)

Q
e Ra : M — Hom(Cg°(X),Cs°(X)") meromorphic

and extending a lift of Ra to M:
\ vf,g € C&(X):
M 4) Hom COO(X) COO( ) ) (Ra()f, @) 2y, lifts and extends

]\ / to M the function (R (-)f, g>L2(X)

o(A)

If this is possiPIe:
The poles of Ra are called the resonances of A.
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Problem 1: Meromorphic continuation

Wanted: meromorphic continuation of Ra : C \ o(A) — B(L?(X)) across o(A),

by replacing B(L3(X)) with Hom(CZ®(X),C (X))
i.e.
M
e a Riemann surface l" with Q open in C, containing (a part of) o(A)

Q
e Ra : M — Hom(Cg°(X),Cs°(X)") meromorphic

and extending a lift of Ra to M:
\ vt g € C(X):
M 4> Hom COO(X) COO( )) (Ra()f, ) 2(xy lifts and extends

]\ / to M the function (R (-)f, g>L2(X)

o(A)

If this is possiPIe:
The poles of Ra are called the resonances of A.

Problem 2: Localization and nature of the resonances
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Ra : M — Hom(C2*(X),C2°(X)")

To simplify notation, suppose:  Ra : M — Hom(Cg°(X),C*>(X))
(true if X is a Riemannian symmetric space of the noncompact type)

mero extension of Ra.
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Ra : M — Hom(C2°(X),C(X)') mero extension of Ry.

To simplify notation, suppose:  Ra : M — Hom(Cg°(X),C*>(X))
(true if X is a Riemannian symmetric space of the noncompact type)

Let z, be a resonance of A.
The residue operator at z; is the linear operator

Resz, Ra : C&(X) — C(X)
“defined” for f € Cg°(X) by

ReszRa(f) : X 3 y — Resz—z [Ra(2)(H)](y) € C
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Ra : M — Hom(C(X),C°(X)')  mero extension of Ra.
To simplify notation, suppose: Ra : M — Hom(Cg°(X),C> (X))
(true if X is a Riemannian symmetric space of the noncompact type)

Let z, be a resonance of A.
The residue operator at z, is the linear operator

Resz, Ra : C°(X) — C=(X)
“defined” for f € Cg°(X) by
ReszRa(f) : X 3 y — Resz—z [Ra(2)(H)](y) € C
[ “defined”: residues are computed wrt charts in M, so up to nonzero constant multiples]
Well-defined: the subspace Res;, := .EfA(Cé")(X)) of C>(X).

The rank of the residue operator at z; is dim (Resz, ).
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Ra : M — Hom(C(X),C°(X)')  mero extension of Ra.
To simplify notation, suppose: Ra : M — Hom(Cg°(X),C> (X))
(true if X is a Riemannian symmetric space of the noncompact type)

Let zy be a resonance of A.
The residue operator at z; is the linear operator

Resz, Ra : C°(X) — C=(X)
“defined” for f € Cg°(X) by
ReszRa(f) : X 3 y — Resz—z [Ra(2)(H)](y) € C
[ “defined”: residues are computed wrt charts in M, so up to nonzero constant multiples]
Well-defined: the subspace Res;, := .EIA(CE‘)(X)) of C>(X).

The rank of the residue operator at z; is dim (Resz, ).

Problem 3: Find image and rank of the residue operator at z,
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Additional properties appear when X is a homogenous space of a Lie group G
endowed with a G-invariant Riemannian metric.

Example:

X =G/K is a Riemannian symmetric space of the noncompact type, where:
G connected noncompact real semisimple Lie group with finite center

K maximal compact subgroup of G

e.g.

o Poincaré half-plane H = SL(2,R)/SO(2); more generally SL(n,R)/SO(n)
o real hyperbolic space H"(R) = SOo(1, n)/ SO(n)
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Additional properties appear when X is a homogenous space of a Lie group G
endowed with a G-invariant Riemannian metric.

Example:

X =G/K is a Riemannian symmetric space of the noncompact type, where:
G connected noncompact real semisimple Lie group with finite center

K maximal compact subgroup of G

e.g.
o Poincaré half-plane H = SL(2,R)/SO(2); more generally SL(n,R)/SO(n)
o real hyperbolic space H"(R) = SOo(1, n)/ SO(n)

The Laplacian A of X is G-invariant
~ Ra(z) and its mero extension Ra(z) are G-invariant
~» the residue operator at a resonance z is a G-invariant op : Cz°(X) — C*°(X)
~» its image Resz, C C*°(X) is a G-module
(a K-spherical rep of G if X = G/K is Riem. symmetric noncompact type)
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Additional properties appear when X is a homogenous space of a Lie group G
endowed with a G-invariant Riemannian metric.

Example:

X =G/K is a Riemannian symmetric space of the noncompact type, where:
G connected noncompact real semisimple Lie group with finite center

K maximal compact subgroup of G

e.g.
o Poincaré half-plane H = SL(2,R)/SO(2); more generally SL(n,R)/SO(n)
o real hyperbolic space H"(R) = SOo(1, n)/ SO(n)

The Laplacian A of X is G-invariant
~ Ra(z) and its mero extension Ra(z) are G-invariant
~» the residue operator at a resonance z is a G-invariant op : Cz°(X) — C*°(X)
~» its image Resz, C C*°(X) is a G-module
(a K-spherical rep of G if X = G/K is Riem. symmetric noncompact type)

Problem 3’: Which (spherical) representations of G we obtain?

Rank of residue operator = dimension of the corresponding representation
Irreducible? Unitary?
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Some usual renormalizations

In the literature on resonances, the setting is usually normalized as follows:

o Translate the spectrum [p%, +o0) to [0, +o0)
i.e. consider A — p% instead of A

o Change variables u = z*> ~- choice of square root: v/—1 =i
ue€ C\J[0,+occ] correspondsto ze€ C*={we C:Imw > 0}.

o Define
R(2) = Ry () = (A~ gk -~ )"

So R: C* — B(L?(X)) is a holomorphic operator-valued function.
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Some usual renormalizations

In the literature on resonances, the setting is usually normalized as follows:

o Translate the spectrum [p%, +00) to [0, +oc)
i.e. consider A — p% instead of A

e Change variables u = 7°

~ choice of square root: v/—1 =i

ue€ C\J[0,+occ] correspondsto ze€ C*={we C:Imw > 0}.

o Define

R(z) = Ra_ () = (B — ph — 22) "

So R: C* — B(L?(X)) is a holomorphic operator-valued function.

Wanted:

Meromorphic continuation across R of R : C* — Hom (C°(X), C3°(X)')

In the following:

< the meromorphic extension of R is denoted by R,
¢ aresonance of A is a pole of R.
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The classical example (R”, Agn = —>_7 0)(2)

The resolvent R: CT — Hom (C(R"), C*(R)) extends:
< holomorphically to C if n > 3 is odd,
o holomorphically to a logarithmic cover of C if n > 2 is even,
o meromorphically to C with unique simple pole (resonance)atz=0 ifn=1.
fn=1:
o the residue operatorat z=10is
= e the constant function o
ResoR: C°(R) > f R5y—f0)eC € C*(R)
o Resp := ResoR(C(R)) =
o R" ~ Resy is the trivial representation.
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The classical example (R”, Agn = Z/ ’ 8)(2)

The resolvent R: CT — Hom (C(R"), C*(R)) extends:

¢ holomorphically to C if n > 3 is odd,

o holomorphically to a logarithmic cover of C if n > 2 is even,

o meromorphically to C with unique simple pole (resonance)atz=0 ifn=1.
fn=1:

o the residue operatorat z=10is

Resoﬁ CE(R) S f— the constant function

Rsy—i0ec |SC®

o Resp := Resor?(C,‘;’O(R)) =
o R" ~ Resy is the trivial representation.

Interesting: Riemann surface of the extension of R of different type according to
even/odd dimensions.
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The classical example (R”, Agn = Z/ ’ 8X2)

The resolvent R: CT — Hom (C(R"), C*(R)) extends:

¢ holomorphically to C if n > 3 is odd,

o holomorphically to a logarithmic cover of C if n > 2 is even,

o meromorphically to C with unique simple pole (resonance)atz=0 ifn=1.
fn=1:

o the residue operatorat z=10is

ResoR : C(R) 5 f —»

o Resp := Resor?(CC"o(R)) =
o R" ~ Resy is the trivial representation.

the constant function

Rsy—i0ec |SC®

Interesting: Riemann surface of the extension of R of different type according to
even/odd dimensions.

Resonances appear for Schrodinger operators (or Hamiltonians) H = Agn + V
where V is a potential acting as a multiplication operator.

~~ suitable assumptions on V ensure that H extends as an ess s.a. op on L2(R") with continuous spectrum [0, +ool:

e.g.. Hesss.aif Vrealvalued; spectrumis [0, +oof if M) oo V(x) =0

The notion of resonance originated (~ 1930s) in Quantum Mechanics for Schréding
operators: resonances are the metastable stable states of a system of Hamiltonian
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The real hyperbolic space H"(R)

Motivation: Geometric Scattering

e.g. X = '\ H", asymptotically hyperbolic manifold, quotient of the real hyperbolic
space by a suitable discrete subgroup I of SOqy(1, n).
Ax has a continuous spectrum [p2, +00) and a finite point spectrum.
Resonances of Ax are related to the dynamical Zeta function and com-
pletely characterize the length of the closed geodesics of X [Guillopé-Zworski,
Patterson-Perry, Borthwick-Perry, Guillarmou-Naud...]

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 8/24



The real hyperbolic space H"(R)

Motivation: Geometric Scattering

e.g. X = '\ H", asymptotically hyperbolic manifold, quotient of the real hyperbolic
space by a suitable discrete subgroup I of SOqy(1, n).
Ax has a continuous spectrum [p2, +00) and a finite point spectrum.
Resonances of Ax are related to the dynamical Zeta function and com-
pletely characterize the length of the closed geodesics of X [Guillopé-Zworski,
Patterson-Perry, Borthwick-Perry, Guillarmou-Naud...]

The case of H"(R)

e L. Guillopé and M. Zworski (1995):

n odd: no resonances.

n even: infintely many resonances. Residue operators have finite rank.

M. Zworski (2006): image of the residue ops related to spherical harmonics.

e O O
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The real hyperbolic space H"(R)

Motivation: Geometric Scattering

e.g. X = '\ H", asymptotically hyperbolic manifold, quotient of the real hyperbolic
space by a suitable discrete subgroup I of SOqy(1, n).
Ax has a continuous spectrum [p2, +00) and a finite point spectrum.
Resonances of Ax are related to the dynamical Zeta function and com-
pletely characterize the length of the closed geodesics of X [Guillopé-Zworski,
Patterson-Perry, Borthwick-Perry, Guillarmou-Naud...]

The case of H"(R)

e L. Guillopé and M. Zworski (1995):

n odd: no resonances.

n even: infintely many resonances. Residue operators have finite rank.

M. Zworski (2006): image of the residue ops related to spherical harmonics.

e O O

H"(R) = SOq(1, n)/ SO(n) is the simplest family of noncompact symm. spaces
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The real hyperbolic space H"(R)

Motivation: Geometric Scattering

e.g. X = '\ H", asymptotically hyperbolic manifold, quotient of the real hyperbolic
space by a suitable discrete subgroup I of SOqy(1, n).
Ax has a continuous spectrum [p2, +00) and a finite point spectrum.
Resonances of Ax are related to the dynamical Zeta function and com-
pletely characterize the length of the closed geodesics of X [Guillopé-Zworski,
Patterson-Perry, Borthwick-Perry, Guillarmou-Naud...]

The case of H"(R)

e L. Guillopé and M. Zworski (1995):

n odd: no resonances.

n even: infintely many resonances. Residue operators have finite rank.

M. Zworski (2006): image of the residue ops related to spherical harmonics.

e O O

H"(R) = SOq(1, n)/ SO(n) is the simplest family of noncompact symm. spaces

Why studying resonances on symmetric spaces?

o well understood geometry

o well developed Fourier analysis: HF (=Helgason-Fourier) transform
< radial part of A on a Cartan subspace is a Schrédinger operator

o tools from representation theory
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X = G/K

Riemannian symmetric spaces of noncompact type
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Riemannian symmetric spaces of noncompact type
X=G/K

General X of real rank one:

e R. Miatello and C. Will (2000):

meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).

e J. Hilgert and A.P. (2009):

meromorphic continuation of the resolvent (using HF transform).

o (infinitely many) resonances for X # H"(R) with n odd.

< Finite rank residue operators, image: irreducible finite dim K-spherical reps of G.
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Riemannian symmetric spaces of noncompact type
X =G/K

General X of real rank one:

e R. Miatello and C. Will (2000):

meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).

e J. Hilgert and A.P. (2009):

meromorphic continuation of the resolvent (using HF transform).

o (infinitely many) resonances for X # H"(R) with n odd.

< Finite rank residue operators, image: irreducible finite dim K-spherical reps of G.

X of real rank > 2:
e R. Mazzeo and A. Vasy (2005), A. Strohmaier (2005):
o analytic continuation of the resolvent of A from C* across R
to an open domain in C, if the real rank of X is odd
to a logarithmic cover of an open domain in C, if the real rank of X is even
The open domain is not large enough to find resonances.
o If any, resonances are along the negative imaginary axis.

o No resonances in the even multiplicity Case (=Lie algebra of G has one conjugacy class of Cartan
subalgebras)
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The resolvent of A on X = G/K

Explicit formula for the resolvent R(z) of A on Cg°(X) via HF transform:
forzeC*t
R(z) = (A —px —2°) " : f€ C(X) — R(2)f € C™(X)

is given by
B0 = [ =3 Fxon0) gy e
= ooy =z VeI siyeciy Y ER)
where
a* = dual of a Cartan subspace a ~~ real rank of X := dim a*

(-,+) = inner product on a* induced by the Killing form of the Lie algebra of G
~~ extend (-, -) to the complexification aZ of a* by C-bilinearity
o = spherical function on X of spectral parameter \ € ag

~~ the spherical functions on X are:

e the (normalized) K-invariant joint eigenfunctions of the commutative algebra of G-invariant diff ops on X

e matrix coefficients of the principal K-spherical reps of G corresponding to 1,
f X pjx = convolution on X of f and ¢;x
~~ by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in A € ag
c()\) = Harish-Chandra’s c-function

m = Plancherel density for the HF-fransform
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The resolvents of the Laplacians of R” and X have similar structure:
Resolvent of the Laplacian on R”

- 1 iy-\7 oo (N n
RN = [ g @ T (fe Co "),y e 7)
Resolvent of the Laplacian on X = G/K

1 ax .
[R(Z)f](}’)A/u*m(fX@iA)(Y)m (fe C&(X),y € X)
where:

R" <— a*
Euclidean inner product «+— inner product induced by Killing form
eiy')\?()‘) «—  (Fxoi)(¥)  — [ =pj\(y)[HF transform of f](i\)
ai if f is right-K-invariant
a\ +—

c(iNc(—iN)
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The resolvents of the Laplacians of R” and X have similar structure:

Resolvent of the Laplacian on R”

RN = [ g @ T (fe CE(R).y € BY)
R7 -

Resolvent of the Laplacian on X = G/K

1 a\ o
[R(Z)f](}’)A/u*m(fX@iA)(Y)m (fe C&(X),y € X)
where:

R" <— a*
Euclidean inner product «+— inner product induced by Killing form
M) — (Fxen)y) — =pix (y)[HF transform of f](iX)
ai if f is right-K-invariant
a\ +— - -
c(ir)c(—iX)
Difference:

In general, the Plancherel density for X is a meromorphic function of A € ag
~ these singularities might originate resonances

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 11/24



The resolvents of the Laplacians of R” and X have similar structure:
Resolvent of the Laplacian on R”

- 1 iy-\7 oo (N n
AW = [ gz @ TN (fe Co "),y e 7)
Resolvent of the Laplacian on X = G/K

1 ax .
[R(Z)f](}’)A/u*m(fX@iA)(Y)m (fe C&(X),y € X)
where:

R" <— a*
Euclidean inner product «+— inner product induced by Killing form
eiy')\?()‘) «—  (Fxoi)(¥)  — [ =pj\(y)[HF transform of f](i\)
ai if f is right-K-invariant
a\ +— - -
c(ir)c(—iX)
Difference:

In general, the Plancherel density for X is a meromorphic function of A € ag
~ these singularities might originate resonances
Remark: “might” :

e Plancherel density is nonsingular (< even multiplicity case): then no resonances
e Plancherel density might be singular, and still no resonances

e.g. H'(R) x X where nodd and X of rank one
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Some structure: roots of G/K

a ~ g (=Lie algebra of G) by adjoint action ad H with H € a.

e.g. If g C Mat(n,R), then ad H(X) = [H, X] = HX — XH

{ad H : H € a} commuting family of semisimple linear endomorphisms of g
¥ = non-zero joint eigenvalues of {ad H : H € a}= roots of (g, a)

~+ X is a finite subset of a*
¥t = choice of positive positive roots in

go={X€g:[H,X] =a(H)X forall H € a} = root space of « €
m, = dimg g, = multiplicity of the root «
p= 1/22a62+ myo € ll*

Example: SL(3,R)/SO(3)

g = sl(3,R) = 3 x 3 matrices with real coeffs and trace 0
a = {H = diag(h, ho, —(h + h2)) : hy, hp € R} = R?

In this case:

¥ of type Az
Tt = {041,052,a= A -I—az}
m, = 1 for all o

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 12/24



The Plancherel density [c(i\)c(—i))]

(Ao

(a,0)

Notation: For A € ag and a € X set \, =

Harish-Chandra c-function:
Yh={B8€exX":28¢ %} (the unmultipliable positive roots)

272281 (2x5)
cs(\) = =
O = T ) )

¢(\) = cuc ngzi cs(N)
where cyc is @ normalizing constant so that c(p) = 1.

forpe £t
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The Plancherel density [c(i\)c(—iN)]~

Notation: For A € a2 and a € ¥ set \, = {2

(a,0)

Harish-Chandra c-function:
Yh={B8€exX":28¢ %} (the unmultipliable positive roots)

2722812
ca(N) = )

r(xg+ 5 ’3/2 1)r (Aﬁ+ T2 78)

¢(\) = cuc ngzj cs(N)
where cyc is @ normalizing constant so that c(p) = 1.

forpe £t

Many rules: e.g. if both 5 and /2 are roots, then mg,, is even and mj is odd.

Examples
SL(3, R)/ SO(3) Z+ ¥t = {0(1 , 2, 01 + Clg}
[e(iN)e(—iN)] 7! < T cx+ Aa tanh(mAa)

G/K of even multiplicities (ile. = =Xt and ms € 2Nforall B € &%)
[c(iN)e(—iN)] ™" is a polynomial

A. Pasquale (IECL, Lorraine) Resonances and singular integrals
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o= 3 (75 m)

Lemma
ne) = H,Be):+ Ag,
( )/2—1 . m 255—2

P(A) = Tpers (T8 [ivo = (52 = §) + K T8 lids — (3 — 1) + 1),

Q) =11 pest Coth(fr(Aa —8))-
mg odd
Then: 1
[e(N)e(=M)]"" < N(N)P(A)Q(N)

(empty products are equal to 1).
Hence: [c(iX)c(—i)\)]~" has at most first order singularities along the hyperplanes

Hpx+ ={A€ag: Ag = i(ps + K)}
where B € ¥+ has multiplicity mg odd and k € 7.

A. Pasquale (IECL, Lorraine) Resonances and singular integrals
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o= 3 (75 m)

Lemma
ne) = H,Be):+ Ag,
P(N) = Mpers (6™ [i% = (%52 = 3) + K TLZ "% = (3 = 1) + K1),
Q) =T yery 0OM(T(As — 7))
mg odd
Then: ’
[e(Me(=1)] " = N)P()QM)
(empty products are equal to 1).

Hence: [c(i\)c(—i\)] " has at most first order singularities along the hyperplanes
Hpk+t ={A€ag: g ==i(ps + k)}
where B € ¥+ has multiplicity mg odd and k € 7.

Corollary

Set L = min{pg|B| : B € X%, mg odd} .
Then, for every fixed w € a* with |w| = 1, the function r — [c(irw)c(—irw)] " is
holomorphic on C \ i(] — oo, —L] U [L, 4+00[).

Remark: L = +oc0 if mg even for all g € X7.
A. Pasquale (IECL, Lorraine) Resonances and singular integrals 14/24



Extension of the resolvent of the Laplacian on R”
For f € C(R") and y € R”
RAW) = /R n |)\|217—22 e"F()) dA

where = Fourier transform of f
(entire of exp. type and rapidly decreasing by Paley-Wiener theorem)

Wanted: meromorphic continuation of [R(z)f](y) from z € C* across R.
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Extension of the resolvent of the Laplacian on R”
For f € C*(R")and y € R"
RAW) = /R n |A|217722 e"F()) dA

where = Fourier transform of f

(entire of exp. type and rapidly decreasing by Paley-Wiener theorem)
Wanted: meromorphic continuation of [R(z)f](y) from z € C* across R.
Idea (for n > 2): polar coordinates

A= [t [ ([ Tma) 2 ] e

same parity of n

eveninrby w— —w

= F(2)
holomorphicinr € C
rapidly decreasing, same parity of n
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ForR™  [R(2)f](y) < [,;”>° =22 F(r)rdr

o The Riemann surface M to which R extends depends on the parity of F, i.e. of n
e R admits a holomorphic extension to M because F is entire.
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ForR™  [R(2)f](y) < [,;”>° =22 F(r)rdr

o The Riemann surface M to which R extends depends on the parity of F, i.e. of n
e R admits a holomorphic extension to M because F is entire.

nodd: i.e. F odd

+o00 F(I') (—f)
_/o —z 9 / iz
:/+oo F(r) ar
oor_

~» holomorphic extension to C by “shifting” path of integration
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ForR™  [R(2)f](y) < [,;”>° =22 F(r)rdr

o The Riemann surface M to which R extends depends on the parity of F, i.e. of n
o R admits a holomorphic extension to M because F is entire

nodd: i.e. F odd

+oo +o0
e A A e
_ +oo Fr) (—f)
_/0 f—2d+/ —r+zdr
[T
oo =2

~ holomorphic extension to C by “shifting” path of integration

L r=e,
neven:i.e. F even

T+ F(e™) im-periodic

T z=6eCt ew (e{0<Imw < 7}
+oo F(eT e2T

A = [ 5 ar

~» holomorphic extension to the strip by “shifting” path of integration
logarithmic singularities
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Suppose (real rank of X) =dima* =: n > 2.

Extension of the resolvent of A on X = G/K

A. Pasquale (IECL, Lorraine)

Resonances and singular integrals



Extension of the resolvent of A on X = G/K
Suppose (real rank of X) =dima* =: n > 2.

Let f € Cz°(X) and y € X be fixed.

Polar coordinates in a* give

R0 = [ =2 o) simaiy = |, ez Frer

where

_ o . do(w)
FIN=F)=r"" | (1% 00) grassiag
is of the form

r"~2 . even holo functionin r € C \ i(] — oo, —L] U [L, +o0).
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Extension of the resolvent of A on X = G/K

Suppose (real rank of X) =dima* = n > 2.
Let f € C°(X) and y € X be fixed.

Polar coordinates in a* give

R0 = [ =2 o) simaiy = |, ez Frer

where
do(w)
c(irw)c(—irw)

A =Fiyn =2 [ (xee)y

is of the form
n

r"2 . even holo function in r € C \ i(] — oo, —L] U [L, +o0f).

e The Riemann surface M’ above C \ —i[L, +oo[, to which R extends, depends on
the parity of F, i.e. the parity of n.

e The holo/mero extension of R from M’ to a Riemann surface M above C is
equivalent to that of F near —i[L, +o0.

o The extension Rof Rto M is holomorphic on M’ (because F is holo there).

The poles of Ron M (i.e. the resonances), f any, are precisely the poles of the
extension of F to M.
They are on the curve in M above —i[L, +o0l.
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e.g.: if all root multiplicities are even (i.e. holo Plancherel density and L = +o0),
then M’ is Riemann surface above C and get holo extension of Rto M = M'.
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e.g.: if all root multiplicities are even (i.e. holo Plancherel density and L = +0),
then M’ is Riemann surface above C and get holo extension of Rto M = M'.

Construction of the Riemann surface M’ (no resonances there):

Theorem (Strohmaier, Mazzeo-Vasy, Hilgert-P.)
Letf e C°(X) and y € X be fixed.

o Ifthe real rank n of X is odd:
then z — [R(z)f](y) is holomorphic in z € C* := {w € C : Imw > 0} and has
holomorphic continuation to C \ ( — i[L, +oc[).
o Ifthe real rank n of X is even:
Letlog denote the holomorphic branch of the logarithm defined on C\] — oo, 0]
bylog1 = 0.
Set ¢ = logz forz € C* and set
+o0o 1

[Roa(O)1(y) = [R(e)(y) = =g F(e)e dr

Then the function ¢ — [Riog(¢)f1(y) is holomorphic in
Ce So» i ={weC:0<Imw < «} and has holomorphic extension to

C\ Urez\ (0} (iﬂ(n +3) +[log L, +oo[).
The extended function satisfies: [Riog (¢ + im)f](y) = [Rog(¢)f](¥) + TiF (€)
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The rank 2 case

From the above, for every fixed f € Cz°(X) and y € X:

e The resolvent z € C* — [R(2)f](y) extends holo from C* to a Riemann surface
M’ (logarithmic cover) of C \ —i[L, +o0].

Recall:

L=min{pg|B| : B € X%, mg odd} .
— m

Ps = %( 3 +m5>

o The possible poles of R (i.e. the possible resonances) are located above
—i[L, 4+o0].

e The meromorphic continuation of z — [R(z)f](y) across —i[L,+oo[ t0 a
Riemann surface M above C (and containing M’) is equivalent to the
meromorphic continuation to M of

do(w)

z— "_(2)2/31('(>< Pizw) () clizo)c(—iza)
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SL(3,R)/SO(3)

e R. Mazzeo and A. Vasy (2004 and 2007): study by microlocal techniques (not
enough to detect resonances)

e J. Hilgert, A.P. and T. Przebinda (arXiv:1411.6527):

meromorphic continuation to suitable Riemann surfaces over C

there exist infinitely many resonances

residue operators with infinite rank

range of the residue operators realized by irr admissible K-spherical reps of G

S OO0
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SL(3,R)/SO(3)

e R. Mazzeo and A. Vasy (2004 and 2007): study by microlocal techniques (not
enough to detect resonances)

e J. Hilgert, A.P. and T. Przebinda (arXiv:1411.6527):

meromorphic continuation to suitable Riemann surfaces over C

there exist infinitely many resonances

residue operators with infinite rank

range of the residue operators realized by irr admissible K-spherical reps of G

S OO0

Product of two Riemannian symmetric spaces of rank one

J. Hilgert, A.P. and T. Przebinda (arxiv:1508.7032):

o meromorphic continuation to suitable Riemann surfaces over C
< No resonances if one of the two spaces is H"(R) with n odd,

< infinitely many resonances in the other cases

< residue operators with finite rank

<

range of the residue operators realized by finite direct sums of tensor products of

finite dim irr K-spherical reps of Gy and Gz
(where Xy = Gy/Kq and X2 = Go /K> are the symm spaces)
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The cases BC, and C, (except SOg(p, 2) with p > 2 odd)

The rank-two irreducible Riemannian symm. spaces G/K with root system X of type
BC; or C,, with multiplicities (my, My, ms):

G SU(p,2) (p >2) | SOg(p,2) (p>2) | Sp(p,2) (p>2) | SO*(10) Eg(—14)
K S(U(p) x U(2)) SO(p) x SO(2) Sp(p) x Sp(2) u(s) Spin(10) x U(1)
PN BC, Co [F; i 22:: gzcz BC, BC,

(my, M, ms) (1,2,2(p — 2)) (1,p—2,0) (3,4,4pp—-2) | (1,44 (1,6,8)

The long roots are the only roots with odd multiplicities if G # SO(p, 2) with p > 2 odd
~ for G # SOq(p, 2) with p > 2 odd, the resonances can studied by reduction to a
direct product of two rank-one symmetric spaces.
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The cases BC, and C, (except SOg(p, 2) with p > 2 odd)

The rank-two irreducible Riemannian symm. spaces G/K with root system X of type
BC; or C,, with multiplicities (my, My, ms):

G SU(p,2) (p > 2) | 500(p.2) (0 > 2) | Sp(m2) (0= 2) | SO°(10) E1a)
K S(U(p) x U(2)) SO(p) x SO(2) Sp(p) x Sp(2) u(s) Spin(10) x U(1)
PN BC, Co [p) i 22:: gzcz BC, BC,

(my, M, ms) (1,2,2(p — 2)) (1,p—2,0) (3,4,4pp—-2) | (1,44 (1,6,8)

The long roots are the only roots with odd multiplicities if G # SO(p, 2) with p > 2 odd
~ for G # SOq(p, 2) with p > 2 odd, the resonances can studied by reduction to a
direct product of two rank-one symmetric spaces.

. Hilgert, A.P. and T. Przebinda (arxiv:1511.00488):
meromorphic continuation to suitable Riemann surfaces over C

residue operators with finite rank

J
<
o there exists infinitely many resonances
<
<

range of the residue operators realized by finite direct sums of finite dim irreducible
K-spherical reps of G

A. Pasquale (IECL, Lorraine)

Resonances and singular integrals

21/24



SL(3,R)/SO(3)

L = 1px where px > 0 and [p%, +00) is the spectrum of A.

Theorem
LetN € Zso andCy = {z€ C:0>Imz > —(N+ 3)px}.
o There exists a Riemann surface My (explicit) over Cy, such that for all

f e C°(X) and y € X the resolvent z — [R(z2)f](y) extends meromorphically to
a neighborhood of the curve ~y lifting the interval —i(0, (N + 2)px) to My.

o The meromorphically extended resolvent has simple poles precisely at the points
of My above z") = —i(n+ %) withn=0,1,2,...,N

o The residue operator of the meromorphically extended resolvent at a point above
Z(" (with n < N) is independent of N and given by

RespR: fe C°(X) — f x Pt 1yp
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SL(3,R)/SO(3): Residue operators

The range of the residue operator Res R : f e C°(X) — f x @ at a point

n+3)p
above z\"” in terms of spherical representations of G = SL(3, R).

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 23/24



SL(3,R)/SO(3): Residue operators
The range of the residue operator Res,R: f € C°(X) — f x Pt 1) at a point
above z\"” in terms of spherical representations of G = SL(3, R).

Eigenspace representations:
D(X) = commutative algebra of G-invariant differential operators on X
Ex(X) = joint eigenspace of D(X) of spectral parameter A € af.
={f € C>®(X) : Df = v(D)(\)f forall D € D(X)}.
where v : D(X) — S(ac)w is the Harish-Chandra homomorphism.
e.9. v(A)(A) = {p, p) — (A, X)
(Ex(X), Ty) = eigenspace representation of G, where
[TV =Hg %) (g€ G, fe&rX) xeX)
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SL(3,R)/SO(3): Residue operators
The range of the residue operator Res,R: f € C°(X) — f x Pt e at a point
above z(™ in terms of spherical representations of G = SL(3, R).

Eigenspace representations:
D(X) = commutative algebra of G-invariant differential operators on X
Ex(X) = joint eigenspace of D(X) of spectral parameter X € ag.
={f € C>°(X) : Df = v(D)(\)f for all D € D(X)}.
where v : D(X) — S(aC)W is the Harish-Chandra homomorphism.
e.9. v(A)(A) = {p, p) — (A, X)
(Ex(X), Ty) = eigenspace representation of G, where
[TA(@)1(x) =f(g'x) (g€ G, fe&(X), xeX)

Eigenspace representations:
Res,R(CZ°(X)) is the closed subspace of 5(n+%)p(X) generated by the G-translates of

(p(n+%)pl invariant, irreducible, infinite dimensional.

Principal series representations:
(RespR(CZ°(X)), left regular rep) is infinitesimally equiv to the unique irreducible
subquotient of the non-unitary spherical principal series
IndAG,,AN(1 (04 e('”%)p X 1)
containing the trivial K-type. This subquotient is infinite dim. It is unitary iff n =0.
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