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Context: Geometric Scattering Theory
Spectral analysis of the (positive) Laplacian ∆ on a complete non-compact
Riemannian manifold (X , g).

Examples:
Euclidean space Rn: ∆ = −

∑n
j=1

∂2

∂x2
j

.

Poincaré half-plane H = {z = x + iy ∈ C : y > 0} with hyperbolic metric:
∆ = −y2

(
∂2

∂x2 + ∂2

∂y2

)
∆ is a positive, essentially self-adjoint operator on the Hilbert space L2(X ).
Suppose: ∆ has continuous spectrum σ(∆) = [ρ2

X ,+∞[ with ρ2
X ≥ 0.

The resolvent of ∆
R∆(u) = (∆− u)−1

is a bdd operator on L2(X ) depending holomorphically on u ∈ C \ σ(∆) , i.e.
C \ σ(∆) 3 u −→ R∆(u) ∈ B(L2(X )) .

is a holomorphic operator-valued function.

As operator on L2(X ), the resolvent R∆ has no extension across σ(∆).

Letting R∆ act on a smaller dense subspace of L2(X ), e.g. C∞c (X ), a meromorphic
continuation of R∆ across σ(∆) is possible in many cases.
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Problem 1: Meromorphic continuation
Wanted: meromorphic continuation of R∆ : C \ σ(∆) −→ B(L2(X )) across σ(∆),
by replacing B(L2(X )) with Hom(C∞c (X ),C∞c (X )′)

i.e.

• a Riemann surface
M

Ω

π with Ω open in C, containing (a part of) σ(∆)

• R̃∆ : M → Hom(C∞c (X ),C∞c (X )′) meromorphic
and extending a lift of R∆ to M:

M Hom(C∞c (X ),C∞c (X )′)

Ω \ σ(∆)

R̃∆

R∆

∀f , g ∈ C∞c (X):
〈R̃∆(·)f , g〉L2(X)

lifts and extends

to M the function 〈R∆(·)f , g〉L2(X)

If this is possible:
The poles of R̃∆ are called the resonances of ∆.

Problem 2: Localization and nature of the resonances
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R̃∆ : M → Hom(C∞c (X),C∞c (X)′) mero extension of R∆.

To simplify notation, suppose: R̃∆ : M → Hom(C∞c (X),C∞(X))

(true if X is a Riemannian symmetric space of the noncompact type)

Let z0 be a resonance of ∆.
The residue operator at z0 is the linear operator

Resz0 R̃∆ : C∞c (X )→ C∞(X )

“defined” for f ∈ C∞c (X ) by

Resz0 R̃∆(f ) : X 3 y −→ Resz=z0

[
R̃∆(z)(f )

]
(y) ∈ C

[ “defined”: residues are computed wrt charts in M, so up to nonzero constant multiples]

Well-defined: the subspace Resz0 := R̃∆

(
C∞c (X )

)
of C∞(X ).

The rank of the residue operator at z0 is dim
(
Resz0

)
.

Problem 3: Find image and rank of the residue operator at z0
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Additional properties appear when X is a homogenous space of a Lie group G
endowed with a G-invariant Riemannian metric.

Example:
X = G/K is a Riemannian symmetric space of the noncompact type, where:
G connected noncompact real semisimple Lie group with finite center
K maximal compact subgroup of G

e.g.
Poincaré half-plane H = SL(2,R)/ SO(2); more generally SL(n,R)/ SO(n)
real hyperbolic space Hn(R) = SO0(1, n)/ SO(n)

The Laplacian ∆ of X is G-invariant
 R∆(z) and its mero extension R̃∆(z) are G-invariant
 the residue operator at a resonance z0 is a G-invariant op : C∞c (X )→ C∞(X )
 its image Resz0 ⊂ C∞(X ) is a G-module

(a K -spherical rep of G if X = G/K is Riem. symmetric noncompact type)

Problem 3′: Which (spherical) representations of G we obtain?
Rank of residue operator ≡ dimension of the corresponding representation
Irreducible? Unitary?
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Some usual renormalizations
In the literature on resonances, the setting is usually normalized as follows:

Translate the spectrum [ρ2
X ,+∞) to [0,+∞)

i.e. consider ∆− ρ2
X instead of ∆

Change variables u = z2  choice of square root:
√
−1 = i

u ∈ C \ [0,+∞[ corresponds to z ∈ C+ = {w ∈ C : Im w > 0}.
Define

R(z) = R∆−ρ2
X

(z2) = (∆− ρ2
X − z2)−1

So R : C+ → B(L2(X )) is a holomorphic operator-valued function.

Wanted:
Meromorphic continuation across R of R : C+ → Hom (C∞c (X ),C∞c (X )′)

 

C∞(X) instead of C∞c (X)′

for X = G/K symmetricIn the following:
� the meromorphic extension of R is denoted by R̃,
� a resonance of ∆ is a pole of R̃.
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The classical example (Rn,∆Rn = −
∑n

j=1
∂2

∂x2
j
)

The resolvent R : C+ → Hom (C∞c (Rn),C∞(R)) extends:
� holomorphically to C if n ≥ 3 is odd,
� holomorphically to a logarithmic cover of C if n ≥ 2 is even,
� meromorphically to C with unique simple pole (resonance) at z = 0 if n = 1.

If n = 1:
� the residue operator at z = 0 is

Res0R̃ : C∞c (R) 3 f −→
[
the constant function
R 3 y → f̂ (0) ∈ C

]
∈ C∞(R)

� Res0 := Res0R̃
(
C∞c (R)

)
= C,

� Rn y Res0 is the trivial representation.

Interesting: Riemann surface of the extension of R of different type according to
even/odd dimensions.

Resonances appear for Schrödinger operators (or Hamiltonians) H = ∆Rn + V
where V is a potential acting as a multiplication operator.
 suitable assumptions on V ensure that H extends as an ess s.a. op on L2(Rn) with continuous spectrum [0,+∞[:

e. g.: H ess s.a if V real valued; spectrum is [0,+∞[ if lim|x|→∞ V (x) = 0

The notion of resonance originated (∼ 1930s) in Quantum Mechanics for Schrödinger
operators: resonances are the metastable stable states of a system of Hamiltonian H.
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The real hyperbolic space Hn(R)

Motivation: Geometric Scattering
e.g. X = Γ \ Hn, asymptotically hyperbolic manifold, quotient of the real hyperbolic

space by a suitable discrete subgroup Γ of SO0(1, n).
∆X has a continuous spectrum [ρ2

n,+∞) and a finite point spectrum.
Resonances of ∆X are related to the dynamical Zeta function and com-
pletely characterize the length of the closed geodesics of X [Guillopé-Zworski,
Patterson-Perry, Borthwick-Perry, Guillarmou-Naud...]

The case of Hn(R)
• L. Guillopé and M. Zworski (1995):
� n odd: no resonances.
� n even: infintely many resonances. Residue operators have finite rank.
• M. Zworski (2006): image of the residue ops related to spherical harmonics.

Hn(R) = SO0(1, n)/ SO(n) is the simplest family of noncompact symm. spaces

Why studying resonances on symmetric spaces?
� well understood geometry
� well developed Fourier analysis: HF (=Helgason-Fourier) transform
� radial part of ∆ on a Cartan subspace is a Schrödinger operator
� tools from representation theory
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Riemannian symmetric spaces of noncompact type
X = G/K

General X of real rank one:
• R. Miatello and C. Will (2000):
meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).
• J. Hilgert and A.P. (2009):
meromorphic continuation of the resolvent (using HF transform).
� (infinitely many) resonances for X 6= Hn(R) with n odd.
� Finite rank residue operators, image: irreducible finite dim K -spherical reps of G.

X of real rank ≥ 2:
• R. Mazzeo and A. Vasy (2005), A. Strohmaier (2005):
� analytic continuation of the resolvent of ∆ from C+ across R{

to an open domain in C, if the real rank of X is odd
to a logarithmic cover of an open domain in C, if the real rank of X is even

The open domain is not large enough to find resonances.
� If any, resonances are along the negative imaginary axis.
� No resonances in the even multiplicity case (=Lie algebra of G has one conjugacy class of Cartan

subalgebras)
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The resolvent of ∆ on X = G/K

Explicit formula for the resolvent R(z) of ∆ on C∞c (X ) via HF transform:

for z ∈ C+

R(z) = (∆− ρ2
X − z2)−1 : f ∈ C∞c (X )→ R(z)f ∈ C∞(X )

is given by

[R(z)f ](y) �
∫
a∗

1
〈λ, λ〉 − z2 (f × ϕiλ)(y)

dλ
c(iλ)c(−iλ)

(y ∈ X ) ,

where

a∗ = dual of a Cartan subspace a  real rank of X := dim a∗

〈·, ·〉 = inner product on a∗ induced by the Killing form of the Lie algebra of G
 extend 〈·, ·〉 to the complexification a∗C of a∗ by C-bilinearity

ϕλ = spherical function on X of spectral parameter λ ∈ a∗C
 the spherical functions on X are:

• the (normalized) K -invariant joint eigenfunctions of the commutative algebra of G-invariant diff ops on X

• matrix coefficients of the principal K -spherical reps of G corresponding to 1K

f × ϕiλ = convolution on X of f and ϕiλ

 by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in λ ∈ a∗C

c(λ) = Harish-Chandra’s c-function
1

c(iλ)c(−iλ)
= Plancherel density for the HF-fransform
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The resolvents of the Laplacians of Rn and X have similar structure:

Resolvent of the Laplacian on Rn

[R(z)f ](y) �
∫
Rn

1
|λ|2 − z2 eiy·λ f̂ (λ) dλ (f ∈ C∞c (Rn) , y ∈ Rn)

Resolvent of the Laplacian on X = G/K

[R(z)f ](y) �
∫
a∗

1
〈λ, λ〉 − z2 (f × ϕiλ)(y)

dλ
c(iλ)c(−iλ)

(f ∈ C∞c (X ) , y ∈ X )

where:

Rn ←→ a∗

Euclidean inner product ←→ inner product induced by Killing form

eiy·λ f̂ (λ) ←→ (f × ϕiλ)(y)

dλ ←→ dλ
c(iλ)c(−iλ)

−→ =ϕiλ(y)[HF transform of f ](iλ)
if f is right-K -invariant

Difference:
In general, the Plancherel density for X is a meromorphic function of λ ∈ a∗C
 these singularities might originate resonances

Remark: “might” :
• Plancherel density is nonsingular (⇔ even multiplicity case): then no resonances
• Plancherel density might be singular, and still no resonances

e.g. Hn(R)× X where n odd and X of rank one
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Some structure: roots of G/K
a y g (=Lie algebra of G) by adjoint action ad H with H ∈ a.

e.g. If g ⊂ Mat(n,R), then ad H(X) = [H,X ] = HX − XH

{ad H : H ∈ a} commuting family of semisimple linear endomorphisms of g
Σ = non-zero joint eigenvalues of {ad H : H ∈ a}= roots of (g, a)

 Σ is a finite subset of a∗

Σ+ = choice of positive positive roots in Σ

gα = {X ∈ g : [H,X ] = α(H)X for all H ∈ a} = root space of α ∈ Σ
mα = dimR gα = multiplicity of the root α
ρ = 1/2

∑
α∈Σ+ mαα ∈ a∗

Example: SL(3,R)/ SO(3)

g = sl(3,R) = 3× 3 matrices with real coeffs and trace 0

a = {H = diag(h1, h2,−(h1 + h2)) : h1, h2 ∈ R} ∼= R2

In this case:

Σ of type A2

Σ+ = {α1, α2, α̃ = α1 + α2}
mα = 1 for all α

2
~

1
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The Plancherel density [c(iλ)c(−iλ)]−1

Notation: For λ ∈ a∗C and α ∈ Σ set λα = 〈λ,α〉
〈α,α〉

Harish-Chandra c-function:

Σ+
∗ = {β ∈ Σ+ : 2β /∈ Σ} (the unmultipliable positive roots)

cβ(λ) =
2−2λβ Γ(2λβ )

Γ
(
λβ+

mβ/2
4 + 1

2

)
Γ
(
λβ+

mβ/2
4 +

mβ
2

) for β ∈ Σ+
∗

c(λ) = cHC
∏
β∈Σ+

∗
cβ(λ)

where cHC is a normalizing constant so that c(ρ) = 1.

Many rules: e.g. if both β and β/2 are roots, then mβ/2 is even and mβ is odd.

Examples

SL(3,R)/ SO(3): Σ+
∗ = Σ+ = {α1, α2, α1 + α2}

[c(iλ)c(−iλ)]−1 �
∏
α∈Σ+ λα tanh(πλα)

G/K of even multiplicities (i.e. Σ+
∗ = Σ+ and mβ ∈ 2N for all β ∈ Σ+)

[c(iλ)c(−iλ)]−1 is a polynomial
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ρ̃β = 1
2

(
mβ/2

2 + mβ

)
Lemma
Π(λ) =

∏
β∈Σ+

∗
λβ ,

P(λ) =
∏
β∈Σ+

∗

(∏(mβ/2)/2−1
k=0

[
iλβ −

(mβ/2
4 − 1

2

)
+ k

]∏2ρ̃β−2
k=0 [iλβ − (ρ̃β − 1) + k ]

)
,

Q(λ) =
∏

β∈Σ+
∗

mβ odd

coth(π(λβ − ρ̃β)) .

Then:
[c(λ)c(−λ)]−1 � Π(λ)P(λ)Q(λ)

(empty products are equal to 1).

Hence: [c(iλ)c(−iλ)]−1 has at most first order singularities along the hyperplanes
Hβ,k,± = {λ ∈ a∗C : λβ = ±i(ρ̃β + k)}

where β ∈ Σ+
∗ has multiplicity mβ odd and k ∈ Z+.

Corollary
Set L = min{ρ̃β |β| : β ∈ Σ∗+, mβ odd} .
Then, for every fixed ω ∈ a∗ with |ω| = 1, the function r 7→ [c(irω)c(−irω)]−1 is
holomorphic on C \ i

(
]−∞,−L] ∪ [L,+∞[

)
.

Remark: L = +∞ if mβ even for all β ∈ Σ∗+.
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Extension of the resolvent of the Laplacian on Rn

For f ∈ C∞c (Rn) and y ∈ Rn

[R(z)f ](y) �
∫
Rn

1
|λ|2 − z2 eiy·λ f̂ (λ) dλ

where f̂ = Fourier transform of f

(entire of exp. type and rapidly decreasing by Paley-Wiener theorem)

Wanted: meromorphic continuation of [R(z)f ](y) from z ∈ C+ across R.

Idea (for n ≥ 2): polar coordinates[
R(z)f

]
(y) �

∫ +∞

0

1
r 2 − z2

[ ( ∫
Sn−1

eiy·rw f̂ (rw) dw
)

︸ ︷︷ ︸
even in r by w 7→ −w

r n−2︸︷︷︸
same parity of n

]

︸ ︷︷ ︸
= F(z)

holomorphic in r ∈ C
rapidly decreasing, same parity of n

r dr
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For Rn: [R(z)f ](y) �
∫ +∞

0
1

r2−z2 F (r) r dr

The Riemann surface M to which R extends depends on the parity of F , i.e. of n

R admits a holomorphic extension to M because F is entire.

n odd: i.e. F odd

[R(z)f ](y) �
∫ +∞

0

F (r)

r − z
dr +

∫ +∞

0

F (r)

r + z
dr

[
 2r

r2−z2 = 1
r−z + 1

r+z

]
=

∫ +∞

0

F (r)

r − z
dr +

∫ 0

−∞

F (−r)

−r + z
dr

=

∫ +∞

−∞

F (r)

r − z
dr

 holomorphic extension to C by “shifting” path of integration.

n even: i.e. F even  
r = eτ , τ 7→ F (eτ ) iπ-periodic
z = eζ ∈ C+ ! ζ ∈ {0 < Im w < π}

[R(eζ)f ](y) �
∫ +∞

−∞

F (eτ )e2τ

e2τ − e2ζ
dτ

 holomorphic extension to the strip by “shifting” path of integration;
logarithmic singularities

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 16 / 24



For Rn: [R(z)f ](y) �
∫ +∞

0
1

r2−z2 F (r) r dr

The Riemann surface M to which R extends depends on the parity of F , i.e. of n

R admits a holomorphic extension to M because F is entire.

n odd: i.e. F odd

[R(z)f ](y) �
∫ +∞

0

F (r)

r − z
dr +

∫ +∞

0

F (r)

r + z
dr

[
 2r

r2−z2 = 1
r−z + 1

r+z

]
=

∫ +∞

0

F (r)

r − z
dr +

∫ 0

−∞

F (−r)

−r + z
dr

=

∫ +∞

−∞

F (r)

r − z
dr

 holomorphic extension to C by “shifting” path of integration.

n even: i.e. F even  
r = eτ , τ 7→ F (eτ ) iπ-periodic
z = eζ ∈ C+ ! ζ ∈ {0 < Im w < π}

[R(eζ)f ](y) �
∫ +∞

−∞

F (eτ )e2τ

e2τ − e2ζ
dτ

 holomorphic extension to the strip by “shifting” path of integration;
logarithmic singularities

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 16 / 24



For Rn: [R(z)f ](y) �
∫ +∞

0
1

r2−z2 F (r) r dr

The Riemann surface M to which R extends depends on the parity of F , i.e. of n

R admits a holomorphic extension to M because F is entire.

n odd: i.e. F odd

[R(z)f ](y) �
∫ +∞

0

F (r)

r − z
dr +

∫ +∞

0

F (r)

r + z
dr

[
 2r

r2−z2 = 1
r−z + 1

r+z

]
=

∫ +∞

0

F (r)

r − z
dr +

∫ 0

−∞

F (−r)

−r + z
dr

=

∫ +∞

−∞

F (r)

r − z
dr

 holomorphic extension to C by “shifting” path of integration.

n even: i.e. F even  
r = eτ , τ 7→ F (eτ ) iπ-periodic
z = eζ ∈ C+ ! ζ ∈ {0 < Im w < π}

[R(eζ)f ](y) �
∫ +∞

−∞

F (eτ )e2τ

e2τ − e2ζ
dτ

 holomorphic extension to the strip by “shifting” path of integration;
logarithmic singularities

A. Pasquale (IECL, Lorraine) Resonances and singular integrals 16 / 24



Extension of the resolvent of ∆ on X = G/K
Suppose (real rank of X ) = dim a∗ =: n ≥ 2.
Let f ∈ C∞c (X ) and y ∈ X be fixed.
Polar coordinates in a∗ give

[R(z)f ](y) �
∫
a∗

1
〈λ, λ〉 − z2 (f × ϕiλ)(y)

dλ
c(iλ)c(−iλ)

=

∫ ∞
0

1
r 2 − z2 F (r)r dr

where
F (r) = Ff ,y (r) = r n−2

∫
Sn−1

(f × ϕirω)(y)
dσ(ω)

c(irω)c(−irω)

is of the form
r n−2 · even holo function in r ∈ C \ i

(
]−∞,−L] ∪ [L,+∞[

)
.

The Riemann surface M ′ above C \ −i[L,+∞[, to which R extends, depends on
the parity of F , i.e. the parity of n.

The holo/mero extension of R from M ′ to a Riemann surface M above C is
equivalent to that of F near −i[L,+∞[.

The extension R̃ of R to M is holomorphic on M ′ (because F is holo there).
The poles of R̃ on M (i.e. the resonances), if any, are precisely the poles of the
extension of F to M.
They are on the curve in M above −i[L,+∞[.
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e.g.: if all root multiplicities are even (i.e. holo Plancherel density and L = +∞),
then M ′ is Riemann surface above C and get holo extension of R to M = M ′.

Construction of the Riemann surface M ′ (no resonances there):

Theorem (Strohmaier, Mazzeo-Vasy, Hilgert-P.)
Let f ∈ C∞c (X ) and y ∈ X be fixed.

If the real rank n of X is odd:
then z 7→ [R(z)f ](y) is holomorphic in z ∈ C+ := {w ∈ C : Im w > 0} and has
holomorphic continuation to C \

(
− i[L,+∞[

)
.

If the real rank n of X is even:
Let log denote the holomorphic branch of the logarithm defined on C\]−∞, 0]
by log 1 = 0.
Set ζ = log z for z ∈ C+ and set

[Rlog(ζ)f ](y) = [R(eζ)f ](y) =

∫ +∞

−∞

1
e2τ − e2ζ F (eτ )e2τ dτ.

Then the function ζ 7→ [Rlog(ζ)f ](y) is holomorphic in
ζ ∈ S0,π := {w ∈ C : 0 < Im w < π} and has holomorphic extension to
C \

⋃
n∈Z\{0}

(
iπ
(
n + 1

2

)
+ [log L,+∞[

)
.

The extended function satisfies: [Rlog (ζ + iπ)f ](y) = [Rlog(ζ)f ](y) + πiF (eζ)
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If the real rank n of X is odd:
then z 7→ [R(z)f ](y) is holomorphic in z ∈ C+ := {w ∈ C : Im w > 0} and has
holomorphic continuation to C \

(
− i[L,+∞[

)
.

If the real rank n of X is even:
Let log denote the holomorphic branch of the logarithm defined on C\]−∞, 0]
by log 1 = 0.
Set ζ = log z for z ∈ C+ and set

[Rlog(ζ)f ](y) = [R(eζ)f ](y) =

∫ +∞

−∞

1
e2τ − e2ζ F (eτ )e2τ dτ.

Then the function ζ 7→ [Rlog(ζ)f ](y) is holomorphic in
ζ ∈ S0,π := {w ∈ C : 0 < Im w < π} and has holomorphic extension to
C \

⋃
n∈Z\{0}

(
iπ
(
n + 1

2

)
+ [log L,+∞[

)
.

The extended function satisfies: [Rlog (ζ + iπ)f ](y) = [Rlog(ζ)f ](y) + πiF (eζ)
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The rank 2 case

From the above, for every fixed f ∈ C∞c (X ) and y ∈ X :

The resolvent z ∈ C+ 7→ [R(z)f ](y) extends holo from C+ to a Riemann surface
M ′ (logarithmic cover) of C \ −i[L,+∞[.

Recall:
L = min{ρ̃β |β| : β ∈ Σ∗+, mβ odd} .
ρ̃β = 1

2

(mβ/2
2 + mβ

)
The possible poles of R̃ (i.e. the possible resonances) are located above
−i[L,+∞[.

The meromorphic continuation of z → [R(z)f ](y) across −i[L,+∞[ to a
Riemann surface M above C (and containing M ′) is equivalent to the
meromorphic continuation to M of

z −→ F (z) =

∫
S1

(f × ϕizω)(y)
dσ(ω)

c(izω)c(−izω)
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SL(3,R)/ SO(3)
• R. Mazzeo and A. Vasy (2004 and 2007): study by microlocal techniques (not
enough to detect resonances)
• J. Hilgert, A.P. and T. Przebinda (arXiv:1411.6527):
� meromorphic continuation to suitable Riemann surfaces over C
� there exist infinitely many resonances
� residue operators with infinite rank
� range of the residue operators realized by irr admissible K -spherical reps of G

Product of two Riemannian symmetric spaces of rank one
J. Hilgert, A.P. and T. Przebinda (arxiv:1508.7032):
� meromorphic continuation to suitable Riemann surfaces over C
� No resonances if one of the two spaces is Hn(R) with n odd,
� infinitely many resonances in the other cases
� residue operators with finite rank
� range of the residue operators realized by finite direct sums of tensor products of
finite dim irr K -spherical reps of G1 and G2

(where X1 = G1/K1 and X2 = G2/K2 are the symm spaces)
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The cases BC2 and C2 (except SO0(p,2) with p > 2 odd)

The rank-two irreducible Riemannian symm. spaces G/K with root system Σ of type
BC2 or C2, with multiplicities (ml,mm,ms):

G SU(p, 2) (p > 2) SO0(p, 2) (p > 2) Sp(p, 2) (p ≥ 2) SO∗(10) E6(−14)

K S(U(p)× U(2)) SO(p)× SO(2) Sp(p)× Sp(2) U(5) Spin(10)× U(1)

Σ BC2 C2
p = 2: C2
p > 2: BC2

BC2 BC2

(ml,mm,ms) (1, 2, 2(p − 2)) (1, p − 2, 0) (3, 4, 4(p − 2)) (1, 4, 4) (1, 6, 8)

The long roots are the only roots with odd multiplicities if G 6= SO0(p, 2) with p > 2 odd
 for G 6= SO0(p, 2) with p > 2 odd, the resonances can studied by reduction to a
direct product of two rank-one symmetric spaces.

J. Hilgert, A.P. and T. Przebinda (arxiv:1511.00488):
� meromorphic continuation to suitable Riemann surfaces over C
� there exists infinitely many resonances
� residue operators with finite rank
� range of the residue operators realized by finite direct sums of finite dim irreducible
K -spherical reps of G
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SL(3,R)/ SO(3)

L = 1
2ρX where ρX > 0 and [ρ2

X ,+∞) is the spectrum of ∆.

Theorem
Let N ∈ Z≥0 and C−N = {z ∈ C : 0 > Im z > −

(
N + 3

2

)
ρX}.

There exists a Riemann surface MN (explicit) over C−N such that for all
f ∈ C∞c (X ) and y ∈ X the resolvent z → [R(z)f ](y) extends meromorphically to
a neighborhood of the curve γN lifting the interval −i

(
0,
(
N + 3

2

)
ρX
)

to MN .

The meromorphically extended resolvent has simple poles precisely at the points
of MN above z(n) = −i

(
n + 1

2

)
with n = 0, 1, 2, . . . ,N

The residue operator of the meromorphically extended resolvent at a point above
z(n) (with n ≤ N) is independent of N and given by

ResnR : f ∈ C∞c (X )→ f × ϕ(n+ 1
2 )ρ
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SL(3,R)/ SO(3): Residue operators
The range of the residue operator ResnR : f ∈ C∞c (X )→ f × ϕ(n+ 1

2 )ρ at a point

above z(n) in terms of spherical representations of G = SL(3,R).

Eigenspace representations:

D(X) = commutative algebra of G-invariant differential operators on X

Eλ(X) = joint eigenspace of D(X) of spectral parameter λ ∈ a∗C
= {f ∈ C∞(X) : Df = γ(D)(λ)f for all D ∈ D(X)} .

where γ : D(X)→ S(aC)W is the Harish-Chandra homomorphism.
e.g. γ(∆)(λ) = 〈ρ, ρ〉 − 〈λ, λ〉

(Eλ(X),Tλ) = eigenspace representation of G, where
[Tλ(g)f ](x) = f (g−1x) (g ∈ G, f ∈ Eλ(X), x ∈ X)

Eigenspace representations:
ResnR

(
C∞c (X )

)
is the closed subspace of E(n+ 1

2 )ρ(X ) generated by the G-translates of
ϕ(n+ 1

2 )ρ: invariant, irreducible, infinite dimensional.

Principal series representations:
(ResnR

(
C∞c (X )

)
, left regular rep) is infinitesimally equiv to the unique irreducible

subquotient of the non-unitary spherical principal series
IndG

MAN(1⊗ e(n+ 1
2 )ρ ⊗ 1)

containing the trivial K -type. This subquotient is infinite dim. It is unitary iff n = 0.
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Thank you
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