Vector-valued orthogonal polynomials in several variables

Maarten van Pruijssen Universität Paderborn

September 2016

Goal

Understand collections of families of vector valued orthogonal polynomials

- that are parametrized by real parameters,
- that are simultaneous eigenfunctions for a commutative algebra of differential operators,
- that allow for shift operators.

Goal

Understand collections of families of vector valued orthogonal polynomials

- that are parametrized by real parameters,
- that are simultaneous eigenfunctions for a commutative algebra of differential operators,
- that allow for shift operators.

Approach:

- Collect an abundance of examples from representation theory
- Deform the examples

Motivation

Matrix valued orthogonal polynomials in one variable were studied already by KREIN in the 1940s.

Motivation

Matrix valued orthogonal polynomials in one variable were studied already by KREIN in the 1940s. DURÁN (1997): Are there examples of MVOPs that are simultaneous eigenfunctions of a commutative algebra of differential operators?

Motivation

Matrix valued orthogonal polynomials in one variable were studied already by KREIN in the 1940s.

DURÁN (1997): Are there examples of MVOPs that are simultaneous eigenfunctions of a commutative algebra of differential operators?

Yes! Examples were found by GRÜNBAUM, PACHARONI and TIRAO (2002) using spherical functions for the pair (SU(3), U(2)).

Fix $r, N \in \mathbb{N}$ and denote $\mathbb{M} = \text{End}(\mathbb{C}^N)$. Let $(\cdot)^*$ denote Hermitian adjoint.

- A matrix valued polynomial is an element $P \in \mathbb{M}[x]$.
- A matrix weight on an compact subset *I* ⊂ ℝ^r is a map *W* : *I* → M with *W*(*x*)^{*} = *W*(*x*) and *W*(*x*) > 0 almost everywhere and

$$\int_I x^n W(x) dx \in \mathbb{M} \quad \text{(finite moments)}.$$

Define the pairing

$$\langle P, Q \rangle_W = \int_I P(x)^* W(x) Q(x) dx \in \mathbb{M}$$

for $P, Q \in \mathbb{M}[x]$.

The pairing $\langle \cdot, \cdot \rangle_W$ is a **matrix valued inner product**, i.e. it has the following properties:

$$\langle P, Q \rangle_W^* = \langle Q, P \rangle_W,$$

$$\langle P, QA \rangle_W = \langle P, Q \rangle_W A,$$

• $\langle P, P \rangle_W \ge 0$ and $\langle P, P \rangle_W = 0$ iff P = 0

for all $P, Q \in \mathbb{M}[x]$ and all $A \in \mathbb{M}$.

The pairing $\langle \cdot, \cdot \rangle_W$ is a **matrix valued inner product**, i.e. it has the following properties:

$$\blacktriangleright \langle P, Q \rangle_W^* = \langle Q, P \rangle_W,$$

$$\blacktriangleright \langle P, QA \rangle_W = \langle P, Q \rangle_W A,$$

• $\langle P, P \rangle_W \geq 0$ and $\langle P, P \rangle_W = 0$ iff P = 0

for all $P, Q \in \mathbb{M}[x]$ and all $A \in \mathbb{M}$.

Definition

A family $\{P_d, d \in \mathbb{N}^r\} \subset \mathbb{M}[x]$ is called a family of matrix valued orthogonal polynomials, if (1) for all $n \in \mathbb{N}$, the set $\{P_d : |d| \leq n\}$ is a basis of the \mathbb{M} -submodule $\mathbb{M}[x]^n$, (2) for all $d, d' \in \mathbb{N}^r$, $\langle P_d, P_{d'} \rangle_W = \delta_{d,d'} C_d$ for some $C_d \in \mathbb{M}$ with $C_d > 0$.

Fix a matrix weight W and a family of MVOPs $\{P_n : n \in \mathbb{N}\}$. Let $D \in \mathbb{M}[x] \otimes \mathbb{C}[\partial_x]$ and suppose that

- $DP_n = P_n \Lambda_n$ for all $n, (\Lambda_n \in \mathbb{M})$,
- ▶ *D* is symmetric, i.e. $\langle DP, Q \rangle_W = \langle P, DQ \rangle_W$ for all $P, Q \in \mathbb{M}[x]$.

Then (W, D) is called a matrix valued classical pair (MVCP).

Examples of families of MVOPs associated to spherical functions on compact symmetric spaces:

- ► (SU(2) × SU(2), diagSU(2)) by Koornwinder (1985), no differential operators are considered.
- ▶ (SU(3), U(2)) by Grünbaum, Pacharoni, Tirao (2002),
- ► (SU(2) × SU(2), diagSU(2)) revisited by Koelink, vP, Román (2012, 2013),
- (SO(n+1), SO(n)) by Zurrian and Tirao (2013),
- •

Contents

- Group data
- Rank 1 examples
- Varying the parameter
- Examples of higher rank

Linear algebraic groups $/\mathbb{C}$.

- G connected, reductive group, $B \subset G$ a Borel subgroup
- $H \subset G$ a connected reductive subgroup,
- P ⊂ H a parabolic subgroup such that G/P is spherical, i.e. admits an open B-orbit.
- (G, H, P) is called a multiplicity free system.

Linear algebraic groups $/\mathbb{C}$.

- ▶ G connected, reductive group, $B \subset G$ a Borel subgroup
- $H \subset G$ a connected reductive subgroup,
- P ⊂ H a parabolic subgroup such that G/P is spherical, i.e. admits an open B-orbit.
- (G, H, P) is called a multiplicity free system.

Let $\mu: P \to \mathbb{C}^{\times}$ be a (positive) character. Then

- $(\pi^{H}_{\mu}, V^{H}_{\mu}) = \operatorname{ind}_{P}^{H} \mu$ is an irreducible *H*-representation.
- $\operatorname{ind}_{H}^{G} \pi_{\mu}^{H}$ is a multiplicity free *G*-representation.

- (vP, thesis 2012, Heckman & vP 2016) Classification of MFSs with *G*/*H* of rank one, uniform construction of families of MVOPs.
- ► (He, Nishiyama, Oichiai, Y. Oshima, 2013) Classification of MFSs with (G, H) a symmetric pair.
- (vP, preprint 2015) Classification of MFSs with (G, H) spherical, non-symmetric.

No.	G	Н	H _*	J ^c _H
1a	SL_{n+m}	$SL_m \times SL_n$	$\operatorname{SL}_{m-n} \times S((\mathbb{C}^{\times})^n)$	$\{\alpha_{m+1}\}, \{\alpha_{n+m-1}\}$
		$m > n \ge 3$		
1b	SL_{n+2}	$SL_n \times SL_2$	$\operatorname{SL}_{n-2} \times S((\mathbb{C}^{\times})^2)$	$\{\alpha_i\}$
		$n \ge 3$		$i=2,\ldots,n-2,n+1$
		$m > n \ge 3$		unless $i = n - 2 = 2$
1c	SL_{m+1}	$\operatorname{SL}_m, m \geq 2$	SL_{m-1}	$\Pi_H \setminus \{\alpha_i\}$
2	SL _{2n+1}	$\operatorname{Sp}_{2n} \times \mathbb{C}^{\times}$	C×	Ø
3	SL _{2n+1}	Sp _{2n}	{ <i>e</i> }	Ø
4	Sp _{2n}	$\operatorname{Sp}_{2n-2} \times \mathbb{C}^{\times}$	Sp_{2n-4}	$\forall \alpha_i, \alpha_j \in J^c$:
				$i < j < n \Rightarrow i, j - i \ge 3$
5	SO_{2n+1}	GL _n	{ <i>e</i> }	Ø
6	SO_{4n+2}	SL_{2n+1}	$(SL_2)^n$	$\{\alpha_1, \alpha_{2n}\}$
7	SO ₁₀	$\operatorname{Spin}_7 \times \operatorname{SO}_2$	SL_2	Ø
8	SO ₉	Spin ₇	SL_3	$\{\alpha_1\}$
9	SO ₈	G ₂	SL_2	Ø
10	SO ₇	G ₂	SL_3	$\{\alpha_1\}, \{\alpha_2\}$
11	E ₆	Spin ₁₀	SL_4	Ø
12	G ₂	SL_3	SL_2	$\{\alpha_1\}, \{\alpha_2\}$

Table: MFSs where (G, H) spherical, non-symmetric and G simple. For nos. 1a,b and c the roots of H, the semi-simple part of a maximal non-trivial Levi subgroup, are identified with the roots of G.

The construction of MVOPs relies on a partial ordering of the spectrum of the *G*-module $\operatorname{ind}_{H}^{G} \pi_{\mu}^{H}$.

The construction of MVOPs relies on a partial ordering of the spectrum of the *G*-module $\operatorname{ind}_{H}^{G} \pi_{\mu}^{H}$.

The construction of MVOPs relies on a partial ordering of the spectrum of the *G*-module $\operatorname{ind}_{H}^{G} \pi_{\mu}^{H}$.

OK for rank one cases (checked by inverting the branching rules. Tough game for (F_4, B_4)).

- For several examples of higher rank this spectrum is known (vP, preprint 2015, Koelink & vP & Román, in progress).
- In progress (with GUIDO PEZZINI): determining the spectra using algebraic geometry, spherical systems, combinatorics, calculating the *extended weight semi-group* after ROMAN AVDEEV.

Rank 1 examples

Let (G, H, P) be a MFS with G/H symmetric of rank one and let $\mu: P \to \mathbb{C}^{\times}$ be a positive character. The spherical functions of type π_{μ}^{H}

- ► are the building blocks of (C[G] ⊗ End(V^H_µ))^{H×H} (a module over the zonal spherical functions C[G]^{H×H}),
- ▶ are determined by their restriction to A, since they satisfy

$$F(h_1gh_2) = \pi^H_\mu(h_1)F(g)\pi^H_\mu(h_2), \quad ext{for all } h_1,h_2\in H ext{ and } g\in G.$$

take values in End_M(V^H_µ), when restricted to A ⊂ G (a Cartan torus).

Rank 1 examples

Let (G, H, P) be a MFS with G/H symmetric of rank one and let $\mu: P \to \mathbb{C}^{\times}$ be a positive character. The spherical functions of type π^H_{μ}

- ► are the building blocks of (C[G] ⊗ End(V^H_µ))^{H×H} (a module over the zonal spherical functions C[G]^{H×H}),
- ▶ are determined by their restriction to A, since they satisfy

$$F(h_1gh_2) = \pi^H_\mu(h_1)F(g)\pi^H_\mu(h_2), \quad \text{for all } h_1,h_2\in H \text{ and } g\in G.$$

take values in End_M(V^H_µ), when restricted to A ⊂ G (a Cartan torus).

vP & Román, 2014: classification and explicit calculation of MVCPs obtained in this way, taking values in $\operatorname{End}(\mathbb{C}^2)$. There are **parameters** around (the root mult. of underlying sym. space G/H) which can be varied continuously.

Varying the parameters

Theorem (Koelink, Martinez de los Riós, Román, 2014) For $(SU(2) \times SU(2), diagSU(2))$, the

- family of MVOPs $(P_n^{\mu,\nu}: n \in N)$,
- algebra of differential operators $\mathbb{D}(\mu, \nu)$,
- orthogonality measure $W^{\mu,\nu}(x)dx$

can be deformed continuously (similar to Gegenbauer) with $\nu > 0$. Moreover, $\partial P_n^{\mu,\nu} = n P_{n-1}^{\mu,\nu+1}$.

Varying the parameters

Theorem (Koelink, Martinez de los Riós, Román, 2014) For $(SU(2) \times SU(2), diagSU(2))$, the

- family of MVOPs $(P_n^{\mu,\nu}: n \in N)$,
- algebra of differential operators $\mathbb{D}(\mu, \nu)$,
- orthogonality measure $W^{\mu,\nu}(x)dx$

can be deformed continuously (similar to Gegenbauer) with $\nu > 0$. Moreover, $\partial P_n^{\mu,\nu} = n P_{n-1}^{\mu,\nu+1}$.

vP & Román, **preprint 2016**: Similar results for the examples of size 2×2 , using different methods.

Varying the parameters

Theorem (Koelink, Martinez de los Riós, Román, 2014) For $(SU(2) \times SU(2), diagSU(2))$, the

- family of MVOPs $(P_n^{\mu,\nu}: n \in N)$,
- algebra of differential operators $\mathbb{D}(\mu, \nu)$,
- orthogonality measure $W^{\mu,\nu}(x)dx$

can be deformed continuously (similar to Gegenbauer) with $\nu > 0$. Moreover, $\partial P_n^{\mu,\nu} = n P_{n-1}^{\mu,\nu+1}$.

vP & Román, **preprint 2016**: Similar results for the examples of size 2×2 , using different methods. This method also applies to the above case (with the same results).

The spectrum of $\operatorname{ind}_{H}^{G} \pi_{\mu}^{H}$ provides the function $\Phi_{0}^{\mu}: A \to \operatorname{End}(\mathbb{C}^{N})$, by arranging the restrictions to A of the spherical functions of degree zero in a matrix.

The function function Φ_0^{μ} transfers the properties of the spherical functions, to those of the MVOPs. It is a *crucial* object in the theory.

The function function Φ_0^{μ} transfers the properties of the spherical functions, to those of the MVOPs. It is a *crucial* object in the theory.

Theorem (Koornwinder 1985)

In the case $(SU(2) \times SU(2), \operatorname{diag}SU(2))$, there exist elements $g_a \in \operatorname{GL}_2(\mathbb{C})$ for $a \in A_{reg}$, and diagonal matrices D^{μ} , such that

$$\Phi^{\mu}_0(a) = D^{\mu} \cdot \pi_{\mu}(g_a) \cdot D^{\mu}.$$

The function function Φ_0^{μ} transfers the properties of the spherical functions, to those of the MVOPs. It is a *crucial* object in the theory.

Theorem (Koornwinder 1985)

In the case $(SU(2) \times SU(2), \operatorname{diag}SU(2))$, there exist elements $g_a \in \operatorname{GL}_2(\mathbb{C})$ for $a \in A_{reg}$, and diagonal matrices D^{μ} , such that

$$\Phi^{\mu}_0(a) = D^{\mu} \cdot \pi_{\mu}(g_a) \cdot D^{\mu}.$$

(a miraculous formula!)

- Consider $(G, H) = (SU(n + 1) \times SU(n + 1), diagSU(n + 1))$, the MFSs correspond to representations $k\omega_1, k\omega_n$, with k = 0, 1, ...
- ► The decomposition of the *G*-module $\operatorname{ind}_{H}^{G} \pi_{k\omega_{1}}^{H}$ is known the spectrum behaves well wrt tensor products.

We obtain MVOPs in several variables (taking values in $\operatorname{End}(\mathbb{C}^{d_k})$, with $d_k = \binom{n+k}{n}$).

Theorem (Koelink, vP, Román 2016)

In the case $(SU(n + 1) \times SU(n + 1), diagSU(n + 1))$, there exist elements $g_a \in GL_{n+1}(\mathbb{C})$ for $a \in A_{reg}$, and diagonal matrices D^{μ} and an invertible upper triangular matrix U, such that

$$\Phi^{\mu}_0(a) = D^{\mu} \cdot \pi_{\mu}(g_a) \cdot D^{\mu} \cdot U.$$

Theorem (Koelink, vP, Román 2016)

In the case $(SU(n + 1) \times SU(n + 1), diagSU(n + 1))$, there exist elements $g_a \in GL_{n+1}(\mathbb{C})$ for $a \in A_{reg}$, and diagonal matrices D^{μ} and an invertible upper triangular matrix U, such that

$$\Phi^{\mu}_0(a) = D^{\mu} \cdot \pi_{\mu}(g_a) \cdot D^{\mu} \cdot U.$$

Note: the matrix U is hard to calculate. For the element g_a we have an explicit expression.

Idea of proof:

- ► Candidate for g_a is g_a = Φ₀^{µmin}(a), the 'minimal' spherical function at hand.
- ► The action of g_a on V_{kω1} = S^k(V_{ω1}) can be calculated in two ways; comparing coefficients yields the result.
- The upper-triangular matrix has to do with specific equivariant embeddings in tensor products, whose decomposition yields terms of highest weights that are smaller than the one we started with – hence the matrix is upper triangular.
- ► The entries of the diagonal matrices D^µ in play are lengths of non-zero vectors. It follows that U is invertible.

On $\mathrm{SU}(3)\times \mathrm{SU}(3)/\mathrm{diagSU}(3)$ we obtain

$$g_{a} = \begin{pmatrix} t_{1} & \frac{1}{2}(t_{3}^{-1}t_{2} + t_{2}^{-1}t_{3}) & t_{1}^{-1} \\ t_{2} & \frac{1}{2}(t_{1}^{-1}t_{3} + t_{3}^{-1}t_{1}) & t_{2}^{-1} \\ t_{3} & \frac{1}{2}(t_{2}^{-1}t_{1} + t_{1}^{-1}t_{2}) & t_{3}^{-1} \end{pmatrix}, \quad a = (t, t^{-1}), \quad t_{1}t_{2}t_{3} = 1.$$

Outlook

- ► Collect the spectra of the multiplicity free *G*-modules $\operatorname{ind}_{H}^{G} \pi_{\mu}^{H}$ (with PEZZINI).
- Write GAP-code to calculate the crucial functions Φ^μ₀ for selected examples.
- Investigate deformations of higher rank examples (with KOELINK and ROMÁN).
- Analogues for the non-compact duals of the compact symmetric spaces.

Challenges

- Understand $(U\mathfrak{g})^{\mathfrak{k}}/I(\mu)$ (a commutative quotient):
 - Harish-Chandra homomorphism,
 - Lepowsky map,
 - radial parts.
- Relate/connect to work of Dunkl, Griffeth: vector valued Jack polynomials.
- The spherical functions are Weyl group invariant. Are these results shadows of the representation theory of some Hecke algebra?

▶

Thank you!