
Vector-valued orthogonal polynomials in several
variables

Maarten van Pruijssen

Universität Paderborn

September 2016





Introduction

Goal
Understand collections of families of vector valued orthogonal
polynomials

I that are parametrized by real parameters,

I that are simultaneous eigenfunctions for a commutative
algebra of differential operators,

I that allow for shift operators.

Approach:

I Collect an abundance of examples from representation theory

I Deform the examples
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Introduction

Motivation
Matrix valued orthogonal polynomials in one variable were studied
already by Krein in the 1940s.

Durán (1997): Are there examples of MVOPs that are
simultaneous eigenfunctions of a commutative algebra of
differential operators?
Yes! Examples were found by Grünbaum, Pacharoni and
Tirao (2002) using spherical functions for the pair (SU(3),U(2)).
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Introduction

Fix r ,N ∈ N and denote M = End(CN). Let (·)∗ denote
Hermitian adjoint.

I A matrix valued polynomial is an element P ∈M[x ].

I A matrix weight on an compact subset I ⊂ Rr is a map
W : I →M with W (x)∗ = W (x) and W (x) > 0 almost
everywhere and∫

I
xnW (x)dx ∈M (finite moments).

I Define the pairing

〈P,Q〉W =

∫
I
P(x)∗W (x)Q(x)dx ∈M

for P,Q ∈M[x ].



Introduction

The pairing 〈·, ·〉W is a matrix valued inner product, i.e. it has
the following properties:

I 〈P,Q〉∗W = 〈Q,P〉W ,

I 〈P,QA〉W = 〈P,Q〉WA,

I 〈P,P〉W ≥ 0 and 〈P,P〉W = 0 iff P = 0

for all P,Q ∈M[x ] and all A ∈M.

Definition
A family {Pd , d ∈ Nr} ⊂M[x ] is called a family of matrix valued
orthogonal polynomials, if (1) for all n ∈ N, the set {Pd : |d | ≤ n}
is a basis of the M-submodule M[x ]n, (2) for all d , d ′ ∈ Nr ,
〈Pd ,Pd ′〉W = δd ,d ′Cd for some Cd ∈M with Cd > 0.
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Introduction

Fix a matrix weight W and a family of MVOPs {Pn : n ∈ N}. Let
D ∈M[x ]⊗ C[∂x ] and suppose that

I DPn = PnΛn for all n, (Λn ∈M),

I D is symmetric, i.e. 〈DP,Q〉W = 〈P,DQ〉W for all
P,Q ∈M[x ].

Then (W ,D) is called a matrix valued classical pair (MVCP).



Introduction

Examples of families of MVOPs associated to spherical functions
on compact symmetric spaces:

I (SU(2)× SU(2), diagSU(2)) by Koornwinder (1985), no
differential operators are considered.

I (SU(3),U(2)) by Grünbaum, Pacharoni, Tirao (2002),

I (SU(2)× SU(2), diagSU(2)) revisited by Koelink, vP, Román
(2012, 2013),

I (SO(n + 1),SO(n)) by Zurrian and Tirao (2013),

I . . .
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Group data

Linear algebraic groups /C.

I G connected, reductive group, B ⊂ G a Borel subgroup

I H ⊂ G a connected reductive subgroup,

I P ⊂ H a parabolic subgroup such that G/P is spherical, i.e.
admits an open B-orbit.

I (G ,H,P) is called a multiplicity free system.

Let µ : P → C× be a (positive) character. Then

I (πHµ ,V
H
µ ) = indHPµ is an irreducible H-representation.

I indGHπ
H
µ is a multiplicity free G -representation.
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Group data

I (vP, thesis 2012, Heckman & vP 2016) Classification of MFSs
with G/H of rank one, uniform construction of families of
MVOPs.

I (He, Nishiyama, Oichiai, Y. Oshima, 2013) Classification of
MFSs with (G ,H) a symmetric pair.

I (vP, preprint 2015) Classification of MFSs with (G ,H)
spherical, non-symmetric.



No. G H H∗ JcH
1a SLn+m SLm × SLn SLm−n × S((C×)n) {αm+1}, {αn+m−1}

m > n ≥ 3
1b SLn+2 SLn × SL2 SLn−2 × S((C×)2) {αi}

n ≥ 3 i = 2, . . . , n − 2, n + 1
m > n ≥ 3 unless i = n − 2 = 2

1c SLm+1 SLm,m ≥ 2 SLm−1 ΠH\{αi}
2 SL2n+1 Sp2n × C× C× ∅
3 SL2n+1 Sp2n {e} ∅
4 Sp2n Sp2n−2 × C× Sp2n−4 ∀αi , αj ∈ Jc :

i < j < n⇒ i , j − i ≥ 3
5 SO2n+1 GLn {e} ∅
6 SO4n+2 SL2n+1 (SL2)n {α1, α2n}
7 SO10 Spin7 × SO2 SL2 ∅
8 SO9 Spin7 SL3 {α1}
9 SO8 G2 SL2 ∅

10 SO7 G2 SL3 {α1}, {α2}
11 E6 Spin10 SL4 ∅
12 G2 SL3 SL2 {α1}, {α2}

Table: MFSs where (G ,H) spherical, non-symmetric and G simple. For
nos. 1a,b and c the roots of H, the semi-simple part of a maximal
non-trivial Levi subgroup, are identified with the roots of G .



Group data

The construction of MVOPs relies on a partial ordering of the
spectrum of the G -module indGHπ

H
µ .

µ
wµ

OK for rank one cases (checked by inverting the branching rules.
Tough game for (F4,B4)).
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Group data

I For several examples of higher rank this spectrum is known
(vP, preprint 2015, Koelink & vP & Román, in progress).

I In progress (with Guido Pezzini): determining the spectra
using algebraic geometry, spherical systems, combinatorics,
calculating the extended weight semi-group after Roman
Avdeev.



Rank 1 examples

Let (G ,H,P) be a MFS with G/H symmetric of rank one and let
µ : P → C× be a positive character. The spherical functions of
type πHµ

I are the building blocks of
(
C[G ]⊗ End(VH

µ )
)H×H

(a module

over the zonal spherical functions C[G ]H×H),

I are determined by their restriction to A, since they satisfy

F (h1gh2) = πHµ (h1)F (g)πHµ (h2), for all h1, h2 ∈ H and g ∈ G .

I take values in EndM(VH
µ ), when restricted to A ⊂ G (a

Cartan torus).

vP & Román, 2014: classification and explicit calculation of
MVCPs obtained in this way, taking values in End(C2).
There are parameters around (the root mult. of underlying sym.
space G/H) which can be varied continuously.
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Varying the parameters

Theorem (Koelink, Martinez de los Riós, Román, 2014)

For (SU(2)× SU(2), diagSU(2)), the

I family of MVOPs (Pµ,νn : n ∈ N),

I algebra of differential operators D(µ, ν),

I orthogonality measure W µ,ν(x)dx

can be deformed continuously (similar to Gegenbauer) with ν > 0.
Moreover, ∂Pµ,νn = nPµ,ν+1

n−1 .

vP & Román, preprint 2016: Similar results for the examples of
size 2× 2, using different methods.This method also applies to the
above case (with the same results).
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Examples of higher rank

The spectrum of indGHπ
H
µ provides the function

Φµ
0 : A→ End(CN), by arranging the restrictions to A of the

spherical functions of degree zero in a matrix.

µ
wµ



Examples of higher rank

The function function Φµ
0 transfers the properties of the spherical

functions, to those of the MVOPs. It is a crucial object in the
theory.

Theorem (Koornwinder 1985)

In the case (SU(2)× SU(2),diagSU(2)), there exist elements
ga ∈ GL2(C) for a ∈ Areg , and diagonal matrices Dµ, such that

Φµ
0 (a) = Dµ · πµ(ga) · Dµ.

(a miraculous formula!)



Examples of higher rank

The function function Φµ
0 transfers the properties of the spherical

functions, to those of the MVOPs. It is a crucial object in the
theory.

Theorem (Koornwinder 1985)

In the case (SU(2)× SU(2), diagSU(2)), there exist elements
ga ∈ GL2(C) for a ∈ Areg , and diagonal matrices Dµ, such that

Φµ
0 (a) = Dµ · πµ(ga) · Dµ.

(a miraculous formula!)



Examples of higher rank

The function function Φµ
0 transfers the properties of the spherical

functions, to those of the MVOPs. It is a crucial object in the
theory.

Theorem (Koornwinder 1985)

In the case (SU(2)× SU(2), diagSU(2)), there exist elements
ga ∈ GL2(C) for a ∈ Areg , and diagonal matrices Dµ, such that

Φµ
0 (a) = Dµ · πµ(ga) · Dµ.

(a miraculous formula!)



Examples of higher rank

I Consider (G ,H) = (SU(n + 1)× SU(n + 1), diagSU(n + 1)),
the MFSs correspond to representations kω1, kωn, with
k = 0, 1, . . .

I The decomposition of the G -module indGHπ
H
kω1

is known – the
spectrum behaves well wrt tensor products.

We obtain MVOPs in several variables (taking values in End(Cdk ),
with dk =

(n+k
n

)
).



Examples of higher rank

Theorem (Koelink, vP, Román 2016)

In the case (SU(n + 1)× SU(n + 1), diagSU(n + 1)), there exist
elements ga ∈ GLn+1(C) for a ∈ Areg , and diagonal matrices Dµ

and an invertible upper triangular matrix U, such that

Φµ
0 (a) = Dµ · πµ(ga) · Dµ · U.

Note: the matrix U is hard to calculate. For the element ga we
have an explicit expression.
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Examples of higher rank

Idea of proof:

I Candidate for ga is ga = Φµmin
0 (a), the ’minimal’ spherical

function at hand.

I The action of ga on Vkω1 = Sk(Vω1) can be calculated in two
ways; comparing coefficients yields the result.

I The upper-triangular matrix has to do with specific equivariant
embeddings in tensor products, whose decomposition yields
terms of highest weights that are smaller than the one we
started with – hence the matrix is upper triangular.

I The entries of the diagonal matrices Dµ in play are lengths of
non-zero vectors. It follows that U is invertible.



Examples of higher rank

On SU(3)× SU(3)/diagSU(3) we obtain

ga =

t1
1
2 (t−1

3 t2 + t−1
2 t3) t−1

1

t2
1
2 (t−1

1 t3 + t−1
3 t1) t−1

2

t3
1
2 (t−1

2 t1 + t−1
1 t2) t−1

3

 , a = (t, t−1), t1t2t3 = 1.



Outlook

I Collect the spectra of the multiplicity free G -modules indGHπ
H
µ

(with Pezzini).

I Write GAP-code to calculate the crucial functions Φµ
0 for

selected examples.

I Investigate deformations of higher rank examples (with
Koelink and Román).

I Analogues for the non-compact duals of the compact
symmetric spaces.



Challenges

I Understand (Ug)k/I (µ) (a commutative quotient):
I Harish-Chandra homomorphism,
I Lepowsky map,
I radial parts.

I Relate/connect to work of Dunkl, Griffeth: vector valued Jack
polynomials.

I The spherical functions are Weyl group invariant. Are these
results shadows of the representation theory of some Hecke
algebra?

I . . .



Thank you!
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