Short $S L_{3}$-structures on Lie algebras

E. B. Vinberg

(Moscow State University)

September 28, 2016

Freudenthal's magic square

A_{1}	A_{2}	C_{3}	F_{4}
A_{2}	$A_{2}+A_{2}$	A_{5}	E_{6}
C_{3}	A_{5}	D_{6}	E_{7}
F_{4}	E_{6}	E_{7}	E_{8}

Let G be a centerless simple complex Lie group and $\mathfrak{g}=\operatorname{Lie}(G)$.

Definition

A short $\mathfrak{s l}_{3}$-structure on \mathfrak{g} is a subalgebra $\mathfrak{l} \subset \mathfrak{g}$ isomorphic to $\mathfrak{s l}_{3}$ such that all irreducible components of its adjoint representation in $\mathfrak{g} / \mathfrak{l}$ are three- or one-dimensional.

The adjoint representation of \mathfrak{l} in \mathfrak{g} defines an action of the corresponding subgroup $L \subset G$ (isomorphic to SL_{3}) by automorphisms of \mathfrak{g}.

Set

$Z(\mathfrak{l})$: the centralizer of \mathfrak{l} in G, $\mathfrak{z}(\mathfrak{l})=\operatorname{Lie}(Z(\mathfrak{l}))$: the centralizer of \mathfrak{l} in \mathfrak{g},
$U=\mathbb{C}^{3}$: the space of the tautological representation of $\mathfrak{l}=\mathfrak{s l}_{3}$, U^{*} : the dual space.

The isotypic decomposition of \mathfrak{g} w.r.t. \mathfrak{l} is $Z(\mathfrak{l})$-invariant and has the form

$$
\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{z}(\mathfrak{l}) \oplus(U \otimes V) \oplus\left(U^{*} \otimes V^{*}\right)
$$

where V and V^{*} are dual representation spaces of $Z(\mathfrak{l})$, on which \mathfrak{l} acts trivially. The subspaces

$$
\mathfrak{g}_{0}=\mathfrak{l} \oplus \mathfrak{z}(\mathfrak{l}), \quad \mathfrak{g}_{1}=U \otimes V, \quad \mathfrak{g}_{-1}=U^{*} \otimes V^{*}
$$

are the eigenspaces of the automorphism of order 3 of \mathfrak{g} defined by a central element of L. They constitute a \mathbb{Z}_{3}-grading of \mathfrak{g}.

The invariance of the operation in \mathfrak{g} under the group L implies that the commutators of the elements of \mathfrak{g}_{1} and \mathfrak{g}_{-1} are given by the following formulas (where elements of U^{*} and V^{*} are marked with primes, and broken brackets denote the pairing):

$$
\begin{aligned}
{\left[u \otimes v, u^{\prime} \otimes v^{\prime}\right] } & =\left(u \otimes u^{\prime}\right)_{0}\left\langle v, v^{\prime}\right\rangle+\left\langle u, u^{\prime}\right\rangle \delta\left(v, v^{\prime}\right), \\
{\left[u_{1} \otimes v_{1}, u_{2} \otimes v_{2}\right] } & =\left(u_{1} \times u_{2}\right) \otimes \nu\left(v_{1}, v_{2}\right), \\
{\left[u_{1}^{\prime} \otimes v_{1}^{\prime}, u_{2}^{\prime} \otimes v_{2}^{\prime}\right] } & =\left(u_{1}^{\prime} \times u_{2}^{\prime}\right) \otimes \nu^{\prime}\left(v_{1}^{\prime}, v_{2}^{\prime}\right),
\end{aligned}
$$

where
$\left(u \otimes u^{\prime}\right)_{0}$: the projection of the linear operator $u \otimes u^{\prime}$ in U to $\mathfrak{l}=\mathfrak{s l}(U)$,
$\delta: V \times V^{\prime} \rightarrow \mathfrak{z}(\mathfrak{l})$: some $Z(\mathfrak{l})$-equivariant bilinear map, $u_{1} \times u_{2}$: the "vector product", the element of U^{*} defined by

$$
\left\langle u_{1} \times u_{2}, u_{3}\right\rangle=\operatorname{det}\left(u_{1}, u_{2}, u_{3}\right) \quad \text { for any } \quad u_{3} \in U
$$

$\nu: V \times V \rightarrow V^{*}$ and $\nu^{\prime}: V^{*} \times V^{*} \rightarrow V:$ some symmetric
$Z(\mathfrak{l})$-equivariant bilinear maps.
We will write $v_{1} \circ v_{2}$ instead of $\nu\left(v_{1}, v_{2}\right)$ and v^{2} instead of $v \circ v$, and similarly for ν^{\prime}.

The Jacobi identity for three elements of \mathfrak{g}_{1} means that the trilinear form

$$
F\left(v_{1}, v_{2}, v_{3}\right)=\left\langle v_{1} \circ v_{2}, v_{3}\right\rangle \quad\left(v_{1}, v_{2}, v_{3} \in V\right)
$$

is symmetric and

$$
\delta\left(v, v^{2}\right)=0 \quad \text { for any } \quad v \in V
$$

Similarly, the Jacobi identity for three elements of \mathfrak{g}_{-1} means that the trilinear form

$$
F^{\prime}\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)=\left\langle v_{1}^{\prime} \circ v_{2}^{\prime}, v_{3}^{\prime}\right\rangle \quad\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} \in V^{*}\right)
$$

is symmetric and

$$
\delta\left(v^{\prime 2}, v^{\prime}\right)=0 \quad \text { for any } \quad v^{\prime} \in V^{*} .
$$

The cubic forms

$$
N(v)=F(v, v, v), \quad N^{\prime}\left(v^{\prime}\right)=F^{\prime}\left(v^{\prime}, v^{\prime}, v^{\prime}\right),
$$

will be called the norm and the dual norm of \mathfrak{g}.

The Jacobi identity for two elements of $U \otimes V$ and one element of $U^{*} \otimes V^{*}$ gives

$$
\delta\left(v, v^{\prime}\right) x=v^{\prime} \circ(v \circ x)-\left\langle v^{\prime}, x\right\rangle v+\frac{1}{3}\left\langle v, v^{\prime}\right\rangle x
$$

for $x \in V$. Similarly,

$$
\delta\left(v, v^{\prime}\right) x^{\prime}=v \circ\left(v^{\prime} \circ x^{\prime}\right)-\left\langle v, x^{\prime}\right\rangle v^{\prime}+\frac{1}{3}\left\langle v, v^{\prime}\right\rangle x^{\prime}
$$

for $x^{\prime} \in V^{*}$.

Theorem

1) The group $Z(\mathfrak{l})$ is reductive;
2) the representation of $\mathfrak{z}(\mathfrak{l})$ in V (and in V^{*}) is faithful;
3) the elements $\delta\left(v, v^{\prime}\right) \quad\left(v \in V, v^{\prime} \in V^{*}\right)$ span $\mathfrak{z}(\mathfrak{l})$ as a vector space.
4) there is an involution σ (in fact, Weyl involution) of \mathfrak{g}, leaving invariant \mathfrak{l} (and hence \mathfrak{g}_{0}) and permuting \mathfrak{g}_{1} and \mathfrak{g}_{-1}.

Corollary

The algebra $\mathfrak{z}(\mathfrak{l})$ together with its representation in V (and V^{*}) and the map δ are reconstructed from the norm by the (mentioned above) formula

$$
\delta\left(v, v^{\prime}\right) x=v^{\prime} \circ(v \circ x)-\left\langle v^{\prime}, x\right\rangle v+\frac{1}{3}\left\langle v, v^{\prime}\right\rangle x \quad \text { for any } \quad x \in V
$$

All the short $\mathfrak{s l}_{3}$-structures on simple Lie algebras can be determined.

Theorem

Every simple Lie algebra \mathfrak{g} but $C_{n}(n \geq 1)$ admits a short $\mathfrak{s l}_{3}$-structure, and such a structure is unique up to an inner automorphism of \mathfrak{g}. The Kac diagrams of the corresponding automorphisms of order 3 are given in the following table.
$A_{n}(n \geqslant 3)$

G_{2}
$\circ \Longrightarrow 0^{1}$
F_{4}

$B_{n}(n \geqslant 3)$

E_{6}

$D_{n}(n \geqslant 5)$

E_{7}

D_{4}

E_{8}

One can observe that in the case $\mathfrak{g}=A_{n}$, which we will call degenerate, the \mathbb{Z}_{3}-grading is "fake" in the sense that it is in fact a \mathbb{Z}-grading of depth one, considered as a \mathbb{Z}_{3}-grading, i.e $\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]=\left[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}\right]=0$ or, equivalently, the form N is zero.

In all the other cases, which will be called non-degenerate, the form N is non-zero. In the following cases it is reducible:
if $\mathfrak{g}=G_{2}$ then $\operatorname{dim} V=1$ and $N=x_{1}^{3}$;
if $\mathfrak{g}=B_{3}$ then $\operatorname{dim} V=2$ and $N=x_{1}^{2} x_{2}$;
if $\mathfrak{g}=D_{4}$ then $\operatorname{dim} V=3$ and $N=x_{1} x_{2} x_{3}$;
if $\mathfrak{g}=B_{n} \quad\left(n \geq 4\right.$ then $\operatorname{dim} V=2 n-4$ and $N=\left(x_{1}^{2}+\cdots+x_{2 n-5}^{2}\right) x_{2 n-4}$;
if $\mathfrak{g}=D_{n} \quad\left(n \geq 5\right.$ then $\operatorname{dim} V=2 n-5$ and $N=\left(x_{1}^{2}+\cdots+x_{2 n-6}^{2}\right) x_{2 n-5}$.
In the cases $\mathfrak{g}=F_{4}, E_{6}, E_{7}, E_{8}$ the form N is irreducible and is the norm in a simple Jordan algebra of rank 3 .

Choose vectors $u_{0} \in U$ and $u_{0}^{\prime} \in U^{*}$ so that $\left\langle u_{0}, u_{0}^{\prime}\right\rangle=1$ and denote by \mathfrak{m} their common stabilizer in \mathfrak{l}. This is a subalgebra isomorphic to $\mathfrak{s l}_{2}$.

Definition

The centralizer $\mathfrak{h}=\mathfrak{z}(\mathfrak{m})$ of \mathfrak{m} in \mathfrak{g} is called the frame of \mathfrak{g}.

The frame is a reductive subalgebra intersecting each minimal l-invariant subspace of \mathfrak{g} in a one-dimensional subspace. It depends on the choice of u_{0} and u_{0}^{\prime} and is defined up to a conjugation by L.
In particular, we have $\mathfrak{h} \cap \mathfrak{l}=\langle h\rangle$, where the element h can be normalized so that $h u_{0}=2 u_{0}$ (and then $h u_{0}^{\prime}=-2 u_{0}^{\prime}$). If we represent $\mathfrak{m}=\mathfrak{s l}_{2}$ as the left upper corner of $\mathfrak{l}=s /_{3}$, then $h=\operatorname{diag}(-1,-1,2)$.

If we identify $u_{0} \otimes V$ with V and $u_{0}^{\prime} \otimes V^{*}$ with V^{*}, then

$$
\mathfrak{h}=V^{*} \oplus(\langle h\rangle \oplus \mathfrak{z}(\mathfrak{l})) \oplus V .
$$

This is a \mathbb{Z}-grading of depth one with the grading subspaces

$$
\mathfrak{h}_{-1}=V^{*}, \quad \mathfrak{h}_{0}=\langle h\rangle \oplus \mathfrak{z}(\mathfrak{l}), \quad \mathfrak{h}_{1}=V
$$

which are the eigenspaces of $\operatorname{ad}(h)$ with eigenvalues $-2,0,2)$.
It is easy to see that

$$
\left(u_{0} \otimes u_{0}^{\prime}\right)_{0}=\frac{1}{3} h .
$$

It follows that the commutators of the elements of V with the elements of V^{*} are given by the formula

$$
\left[v, v^{\prime}\right]=\frac{1}{3}\left\langle v, v^{\prime}\right\rangle h+\delta\left(v, v^{\prime}\right) .
$$

Let $H=Z(\mathfrak{m})$ be the centralizer of \mathfrak{m} in G, so $\operatorname{Lie}(H)=\mathfrak{h}$ and H_{0} be the centralizer of h in H. We have

$$
H_{0}=\mathbb{C}^{*} \cdot Z(\mathfrak{l})
$$

(an almost direct product), where \mathbb{C}^{*} is a one-dimensional torus with $\operatorname{Lie}\left(\mathbb{C}^{*}\right)=\langle h\rangle$.
It follows from the general theory of graded reductive Lie algebras that H_{0} has an open orbit O in $\mathfrak{h}_{1}=V$. There is the following alternative:
if the norm is zero (the degenerate case), then O is one $Z(\mathfrak{l})$-orbit,
if the norm is non-zero (the non-degenerate case), then O decomposes into one-parameter family of homothetic $Z(\mathfrak{l})$-orbits, the level varieties of the norm.

In the non-degenerate case, for any element $e \in O \subset \mathfrak{h}_{1}=V$, there is a unique element $f \in \mathfrak{h}_{-1}=V^{*}$ such that (e, h, f) is an $\mathfrak{s l}_{2}$-triple, i.e.,

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

The $\mathfrak{s l}_{2}$-triples arising in this way, are very special and can be classified a priori. They are characterized by the property that all irreducible components of their adjoint representation in \mathfrak{h} are three- or one-dimensional.

One can show that the element f is proportional to $e^{2}(=e \circ e)$; more precisely,

$$
e^{2}=\frac{1}{3} N(e) f .
$$

Up to a constant factor, the norm of a simple Lie algebra \mathfrak{g} is determined by the frame \mathfrak{h} of \mathfrak{g} as the only cubic form in $V=\mathfrak{h}_{1}$ invariant under $Z(\mathfrak{l})$. Thereby the algebra \mathfrak{g} is reconstructed from its frame.

On the other hand, as we saw above, the frame (and thereby the very algebra \mathfrak{g}) can be reconstructed from the norm.

There is a simple characterization of cubic forms arising in this way.

Up to a constant factor, the norm of a simple Lie algebra \mathfrak{g} is determined by the frame \mathfrak{h} of \mathfrak{g} as the only cubic form in $V=\mathfrak{h}_{1}$ invariant under $Z(\mathfrak{l})$. Thereby the algebra \mathfrak{g} is reconstructed from its frame.

On the other hand, as we saw above, the frame (and thereby the very algebra \mathfrak{g}) can be reconstructed from the norm.

There is a simple characterization of cubic forms arising in this way.

Theorem

A cubic forms N in a vector space V is the norm of a simple Lie algebra if and only if the group of linear transformation preserving N is reductive and acts transitively on the variety $\{v \in V: N(v)=1\}$.

In the following table, for each simple Lie algebra \mathfrak{g} (other than C_{n}), we indicate its frame \mathfrak{h} and the subalgebra $\mathfrak{z}(\mathfrak{l}) \subset \mathfrak{h}$. Besides, we represent the element h by its "numerical labels" on the Dynkin diagram of \mathfrak{h}. Namely, black (white) vertices correspond to the simple roots α with $\alpha(h)=2$ $(\alpha(h)=0)$.

\mathfrak{g}	$\mathfrak{h}=\mathfrak{z}(\mathfrak{m})$	h	$\mathfrak{z}(\mathfrak{l})$
$A_{n}(n \geqslant 3)$	$A_{n-2}+T_{1}$	$\bullet-\mathrm{O}-\cdots-0$	$A_{n-3}+T_{1}$
$B_{n}(n \geqslant 3)$	$B_{n-2}+A_{1}$	$\bullet-\ldots-\cdots 0$	$B_{n-3}+T_{1}$
$D_{n}(n \geqslant 5)$	$D_{n-2}+A_{1}$		$D_{n-3}+T_{1}$
D_{4}	$A_{1}+A_{1}+A_{1}$	- - -	T_{2}
G_{2}	A_{1}	\bullet	0
F_{4}	C_{3}	$\bigcirc \leftharpoonup$	A_{2}
E_{6}	A_{5}		$A_{2}+A_{2}$
E_{7}	D_{6}		A_{5}
E_{8}	E_{7}		E_{6}

Freudenthal's magic square

A_{1}	A_{2}	C_{3}	F_{4}
A_{2}	$A_{2}+A_{2}$	A_{5}	E_{6}
C_{3}	A_{5}	D_{6}	E_{7}
F_{4}	E_{6}	E_{7}	E_{8}

