Short SL_3 -structures on Lie algebras

E. B. Vinberg

(Moscow State University)

September 28, 2016

3

Freudenthal's magic square

A ₁	A ₂	<i>C</i> ₃	F ₄
A ₂	$A_2 + A_2$	A_5	E ₆
<i>C</i> ₃	A ₅	D_6	E ₇
F ₄	E ₆	E ₇	E ₈

イロト イ団ト イヨト イヨト

э

Let G be a centerless simple complex Lie group and $\mathfrak{g} = \operatorname{Lie}(G)$.

Definition

A short \mathfrak{sl}_3 -structure on \mathfrak{g} is a subalgebra $\mathfrak{l} \subset \mathfrak{g}$ isomorphic to \mathfrak{sl}_3 such that all irreducible components of its adjoint representation in $\mathfrak{g}/\mathfrak{l}$ are three- or one-dimensional.

The adjoint representation of l in \mathfrak{g} defines an action of the corresponding subgroup $L \subset G$ (isomorphic to SL_3) by automorphisms of \mathfrak{g} .

Set

$$\begin{split} &Z(\mathfrak{l}): \text{ the centralizer of } \mathfrak{l} \text{ in } \mathcal{G},\\ &\mathfrak{z}(\mathfrak{l})=\mathrm{Lie}(Z(\mathfrak{l})): \text{ the centralizer of } \mathfrak{l} \text{ in } \mathfrak{g},\\ &U=\mathbb{C}^3: \text{ the space of the tautological representation of } \mathfrak{l}=\mathfrak{sl}_3,\\ &U^*: \text{ the dual space.} \end{split}$$

The isotypic decomposition of \mathfrak{g} w.r.t. \mathfrak{l} is $Z(\mathfrak{l})$ -invariant and has the form

$$\mathfrak{g}=\mathfrak{l}\oplus\mathfrak{z}(\mathfrak{l})\oplus(U\otimes V)\oplus(U^*\otimes V^*),$$

where V and V^{*} are dual representation spaces of Z(l), on which l acts trivially. The subspaces

$$\mathfrak{g}_{_0}=\mathfrak{l}\oplus\mathfrak{z}(\mathfrak{l}),\quad \mathfrak{g}_{_1}=U\otimes V,\quad \mathfrak{g}_{_{-1}}=U^*\otimes V^*$$

are the eigenspaces of the automorphism of order 3 of \mathfrak{g} defined by a central element of L. They constitute a \mathbb{Z}_3 -grading of \mathfrak{g} .

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The invariance of the operation in \mathfrak{g} under the group L implies that the commutators of the elements of \mathfrak{g}_1 and \mathfrak{g}_{-1} are given by the following formulas (where elements of U^* and V^* are marked with primes, and broken brackets denote the pairing):

$$\begin{split} & [u \otimes v, u' \otimes v'] = (u \otimes u')_0 \langle v, v' \rangle + \langle u, u' \rangle \delta(v, v'), \\ & [u_1 \otimes v_1, u_2 \otimes v_2] = (u_1 \times u_2) \otimes \nu(v_1, v_2), \\ & [u'_1 \otimes v'_1, u'_2 \otimes v'_2] = (u'_1 \times u'_2) \otimes \nu'(v'_1, v'_2), \end{split}$$

where

 $(u \otimes u')_0$: the projection of the linear operator $u \otimes u'$ in U to $\mathfrak{l} = \mathfrak{sl}(U)$, $\delta : V \times V' \to \mathfrak{zl}(\mathfrak{l})$: some $Z(\mathfrak{l})$ -equivariant bilinear map, $u_1 \times u_2$: the "vector product", the element of U^* defined by

$$\langle u_1 imes u_2, u_3
angle = \mathsf{det}(u_1, u_2, u_3) \quad ext{for any} \quad u_3 \in U,$$

 $\nu: V \times V \rightarrow V^*$ and $\nu': V^* \times V^* \rightarrow V$: some symmetric $Z(\mathfrak{l})$ -equivariant bilinear maps.

We will write $v_1 \circ v_2$ instead of $\nu(v_1, v_2)$ and v^2 instead of $v \circ v$, and similarly for ν' .

The Jacobi identity for three elements of \mathfrak{g}_1 means that the trilinear form

$$F(v_1, v_2, v_3) = \langle v_1 \circ v_2, v_3 \rangle \quad (v_1, v_2, v_3 \in V)$$

is symmetric and

$$\delta(v, v^2) = 0$$
 for any $v \in V$.

Similarly, the Jacobi identity for three elements of \mathfrak{g}_{-1} means that the trilinear form

$$F'(v'_1, v'_2, v'_3) = \langle v'_1 \circ v'_2, v'_3 \rangle \quad (v'_1, v'_2, v'_3 \in V^*)$$

is symmetric and

$$\delta({m v}'^2,{m v}')=0 \quad ext{for any} \quad {m v}'\in V^*.$$

The cubic forms

$$N(v) = F(v, v, v), \quad N'(v') = F'(v', v', v'),$$

will be called the **norm** and the **dual norm** of \mathfrak{g} .

The Jacobi identity for two elements of $U \otimes V$ and one element of $U^* \otimes V^*$ gives

$$\delta(\mathbf{v},\mathbf{v}')\mathbf{x} = \mathbf{v}' \circ (\mathbf{v} \circ \mathbf{x}) - \langle \mathbf{v}',\mathbf{x} \rangle \mathbf{v} + \frac{1}{3} \langle \mathbf{v},\mathbf{v}' \rangle \mathbf{x}$$

for $x \in V$. Similarly,

$$\delta(\mathbf{v},\mathbf{v}')\mathbf{x}'=\mathbf{v}\circ(\mathbf{v}'\circ\mathbf{x}')-\langle\mathbf{v},\mathbf{x}'\rangle\mathbf{v}'+\frac{1}{3}\langle\mathbf{v},\mathbf{v}'\rangle\mathbf{x}'$$

for $x' \in V^*$.

3

- < ∃ →

< 47 ▶

Theorem

1) The group Z(l) is reductive;

2) the representation of $\mathfrak{z}(\mathfrak{l})$ in V (and in V^{*}) is faithful;

3) the elements $\delta(v, v')$ $(v \in V, v' \in V^*)$ span $\mathfrak{z}(\mathfrak{l})$ as a vector space.

4) there is an involution σ (in fact, Weyl involution) of \mathfrak{g} , leaving invariant \mathfrak{l} (and hence \mathfrak{g}_0) and permuting \mathfrak{g}_1 and \mathfrak{g}_{-1} .

Corollary

The algebra $\mathfrak{z}(\mathfrak{l})$ together with its representation in V (and V^{*}) and the map δ are reconstructed from the norm by the (mentioned above) formula

$$\delta(v,v')x = v' \circ (v \circ x) - \langle v',x
angle v + rac{1}{3} \langle v,v'
angle x ext{ for any } x \in V.$$

イロト イポト イヨト イヨト 二日

All the short \mathfrak{sl}_3 -structures on simple Lie algebras can be determined.

Theorem

Every simple Lie algebra \mathfrak{g} but C_n ($n \ge 1$) admits a short \mathfrak{sl}_3 -structure, and such a structure is unique up to an inner automorphism of \mathfrak{g} . The Kac diagrams of the corresponding automorphisms of order 3 are given in the following table.

(日) (四) (王) (王) (王)

One can observe that in the case $\mathfrak{g} = A_n$, which we will call **degenerate**, the \mathbb{Z}_3 -grading is "fake" in the sense that it is in fact a \mathbb{Z} -grading of depth one, considered as a \mathbb{Z}_3 -grading, i.e $[\mathfrak{g}_1, \mathfrak{g}_1] = [\mathfrak{g}_{-1}, \mathfrak{g}_{-1}] = 0$ or, equivalently, the form N is zero.

In all the other cases, which will be called **non-degenerate**, the form N is non-zero. In the following cases it is reducible:

if $\mathfrak{g} = G_2$ then dim V = 1 and $N = x_1^3$; if $\mathfrak{g} = B_3$ then dim V = 2 and $N = x_1^2 x_2$; if $\mathfrak{g} = D_4$ then dim V = 3 and $N = x_1 x_2 x_3$; if $\mathfrak{g} = B_n$ ($n \ge 4$ then dim V = 2n - 4 and $N = (x_1^2 + \dots + x_{2n-5}^2)x_{2n-4}$; if $\mathfrak{g} = D_n$ ($n \ge 5$ then dim V = 2n - 5 and $N = (x_1^2 + \dots + x_{2n-6}^2)x_{2n-5}$.

In the cases $\mathfrak{g} = F_4, E_6, E_7, E_8$ the form N is irreducible and is the norm in a simple Jordan algebra of rank 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Choose vectors $u_0 \in U$ and $u'_0 \in U^*$ so that $\langle u_0, u'_0 \rangle = 1$ and denote by \mathfrak{m} their common stabilizer in \mathfrak{l} . This is a subalgebra isomorphic to \mathfrak{sl}_2 .

Definition

The centralizer $\mathfrak{h} = \mathfrak{z}(\mathfrak{m})$ of \mathfrak{m} in \mathfrak{g} is called the **frame** of \mathfrak{g} .

The frame is a reductive subalgebra intersecting each minimal L-invariant subspace of \mathfrak{g} in a one-dimensional subspace. It depends on the choice of u_0 and u'_0 and is defined up to a conjugation by L.

In particular, we have $\mathfrak{h} \cap \mathfrak{l} = \langle h \rangle$, where the element *h* can be normalized so that $hu_0 = 2u_0$ (and then $hu'_0 = -2u'_0$). If we represent $\mathfrak{m} = \mathfrak{sl}_2$ as the left upper corner of $\mathfrak{l} = sl_3$, then $h = \operatorname{diag}(-1, -1, 2)$.

If we identify $u_0 \otimes V$ with V and $u_0' \otimes V^*$ with V^* , then

$$\mathfrak{h}=V^{*}\oplus(\langle h
angle\oplus\mathfrak{z}(\mathfrak{l}))\oplus V.$$

This is a $\mathbb{Z}\text{-}\mathsf{grading}$ of depth one with the grading subspaces

$$\mathfrak{h}_{-1} = V^*, \quad \mathfrak{h}_0 = \langle h \rangle \oplus \mathfrak{z}(\mathfrak{l}), \quad \mathfrak{h}_1 = V,$$

which are the eigenspaces of ad(h) with eigenvalues -2, 0, 2).

It is easy to see that

$$(u_0\otimes u_0')_0=\frac{1}{3}h.$$

It follows that the commutators of the elements of V with the elements of V^* are given by the formula

$$[\mathbf{v},\mathbf{v}'] = \frac{1}{3} \langle \mathbf{v},\mathbf{v}' \rangle \mathbf{h} + \delta(\mathbf{v},\mathbf{v}').$$

Let $H = Z(\mathfrak{m})$ be the centralizer of \mathfrak{m} in G, so $\operatorname{Lie}(H) = \mathfrak{h}$ and H_0 be the centralizer of h in H. We have

$$H_{0}=\mathbb{C}^{*}\cdot Z(\mathfrak{l})$$

(an almost direct product), where \mathbb{C}^* is a one-dimensional torus with $\operatorname{Lie}(\mathbb{C}^*) = \langle h \rangle$.

It follows from the general theory of graded reductive Lie algebras that H_0 has an open orbit O in $\mathfrak{h}_1 = V$. There is the following alternative:

if the norm is zero (the degenerate case), then O is one Z(l)-orbit,

if the norm is non-zero (the non-degenerate case), then O decomposes into one-parameter family of homothetic $Z(\mathfrak{l})$ -orbits, the level varieties of the norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

In the non-degenerate case, for any element $e \in O \subset \mathfrak{h}_1 = V$, there is a unique element $f \in \mathfrak{h}_{-1} = V^*$ such that (e, h, f) is an \mathfrak{sl}_2 -triple, i.e.,

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$

The \mathfrak{sl}_2 -triples arising in this way, are very special and can be classified a priori. They are characterized by the property that all irreducible components of their adjoint representation in \mathfrak{h} are three- or one-dimensional.

One can show that the element f is proportional to $e^2(=e \circ e)$; more precisely,

$$e^2=\frac{1}{3}\,N(e)\,f.$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

Up to a constant factor, the norm of a simple Lie algebra \mathfrak{g} is determined by the frame \mathfrak{h} of \mathfrak{g} as the only cubic form in $V = \mathfrak{h}_1$ invariant under $Z(\mathfrak{l})$. Thereby the algebra \mathfrak{g} is reconstructed from its frame.

On the other hand, as we saw above, the frame (and thereby the very algebra \mathfrak{g}) can be reconstructed from the norm.

There is a simple characterization of cubic forms arising in this way.

16 / 19

Up to a constant factor, the norm of a simple Lie algebra \mathfrak{g} is determined by the frame \mathfrak{h} of \mathfrak{g} as the only cubic form in $V = \mathfrak{h}_1$ invariant under $Z(\mathfrak{l})$. Thereby the algebra \mathfrak{g} is reconstructed from its frame.

On the other hand, as we saw above, the frame (and thereby the very algebra \mathfrak{g}) can be reconstructed from the norm.

There is a simple characterization of cubic forms arising in this way.

Theorem

A cubic forms N in a vector space V is the norm of a simple Lie algebra if and only if the group of linear transformation preserving N is reductive and acts transitively on the variety $\{v \in V : N(v) = 1\}$.

メポト イヨト イヨト ニヨ

In the following table, for each simple Lie algebra \mathfrak{g} (other than C_n), we indicate its frame \mathfrak{h} and the subalgebra $\mathfrak{z}(\mathfrak{l}) \subset \mathfrak{h}$. Besides, we represent the element h by its "numerical labels" on the Dynkin diagram of \mathfrak{h} . Namely, black (white) vertices correspond to the simple roots α with $\alpha(h) = 2$ ($\alpha(h) = 0$).

17 / 19

g	$\mathfrak{h}=\mathfrak{z}(\mathfrak{m})$	h	$\mathfrak{z}(\mathfrak{l})$
$A_n (n \ge 3)$	$A_{n-2}+T_1$	•OO	$A_{n-3}+T_1$
$B_n(n \ge 3)$	$B_{n-2} + A_1$	●OO●	$B_{n-3}+T_1$
$D_n (n \ge 5)$	$D_{n-2} + A_1$	•	$D_{n-3}+T_1$
D_4	$A_1 + A_1 + A_1$	• • •	T_2
G ₂	A_1	•	0
F ₄	<i>C</i> ₃		<i>A</i> ₂
E ₆	A_5	000	$A_{2} + A_{2}$
E ₇	D ₆	·	A_5
E ₈	E ₇	• <u> </u>	E ₆
		0	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

18 / 19

Freudenthal's magic square

A ₁	A ₂	<i>C</i> ₃	F ₄
A ₂	$A_2 + A_2$	A_5	E ₆
<i>C</i> ₃	A ₅	D_6	E ₇
F ₄	E ₆	E ₇	E ₈

- < ∃ →

< 17 ▶

19 / 19

э